\(x^2+3\sqrt{3x}+1=0\) . Không giải phương trình để tìm hai nghi...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2019

Pt phải là: \(x^2+3\sqrt{3}x+1=0\)

\(\Delta=\left(3\sqrt{3}\right)^2-4.1=27-4=23>0\)
=> pt có 2 nghiệm phân biệt

Theo Vi-et:

\(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=-3\sqrt{3}\\x_1x_2=\frac{c}{a}=1\end{matrix}\right.\)

\(A=\frac{3\left(x_1+x_2\right)^2-6x_1x_2+5x_1x_2}{4x_1x_2\left(x_1^2+x_2^2\right)}\)

\(A=\frac{3\left(x_1+x_2\right)^2-x_1x_2}{4x_1x_2\left(x_1+x_2\right)^2-8\left(x_1x_2\right)^2}\)

\(A=\frac{3.\left(-3\sqrt{3}\right)^2-1}{4.1.\left(-3\sqrt{3}\right)^2-8.1}=\frac{4}{5}\)

NV
29 tháng 4 2020

a/ \(\Delta'=1-m\ge0\Rightarrow m\le1\)

Để biểu thức xác định \(\Rightarrow f\left(0\right)\ne0\Rightarrow m\ne0\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m\end{matrix}\right.\)

Mặt khác do \(x_1;x_2\) là nghiệm của pt nên:

\(\left\{{}\begin{matrix}x_1^2-2x_1+m=0\\x_2^2-2x_1+m=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1^2-3x_1+m=-x_1\\x_2^2-3x_2+m=-x_2\end{matrix}\right.\)

Thay vào ta được:

\(-\frac{x_1}{x_2}-\frac{x_2}{x_1}\le2\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}+2\ge0\)

\(\Leftrightarrow\frac{x_1^2+x_2^2+2x_1x_2}{x_1x_2}\ge0\Leftrightarrow\frac{\left(x_1+x_2\right)^2}{x_1x_2}\ge0\)

\(\Leftrightarrow\frac{4}{m}\ge0\Rightarrow m>0\)

Vậy \(0< m\le1\)

b/ \(\Delta'=m^2-m-2\ge0\Rightarrow\left[{}\begin{matrix}m\ge2\\m\le-1\end{matrix}\right.\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m+2\end{matrix}\right.\)

\(x_1^3+x_2^3\le16\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-16\le0\)

\(\Leftrightarrow8m^3-6m\left(m+2\right)-16\le0\)

\(\Leftrightarrow4m^3-3m^2-6m-8\le0\)

\(\Leftrightarrow\left(m-2\right)\left(4m^2+5m+4\right)\le0\)

\(\Leftrightarrow m\le2\) (do \(4m^2+5m+4=4\left(m+\frac{5}{8}\right)^2+\frac{39}{16}>0;\forall m\))

Kết hợp ta được \(\left[{}\begin{matrix}m=2\\m\le-1\end{matrix}\right.\)

\(A=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\sqrt{\left(-\dfrac{5}{\sqrt{3}}\right)^2-4\cdot\dfrac{-\sqrt{2}}{\sqrt{3}}}=\sqrt{\dfrac{25+4\sqrt{6}}{3}}\)

15 tháng 11 2018

a/ Ta có : △' = (-2)2-(m+3)

=4-m-3 = 1-m

De ptr co 2 nghiem x1 va x2 thì △' ≥0

=>1-m≥0 =>m≤1

Theo Viei{ x1+x2=4 ; x1x2=m+3

Ta co: |x1-x2|=2 ⇔(x1-x2)2=4

⇔(x1+x2)2-4x1x2=4

⇔42-4(m+3)=4

⇔m=0 (TM)

b/ Ta co: △ = (m-1)2-4(m+6)

=m2-6m-23 De ptr co 2 nghiem x1 , x2 thi △≥ 0

=> m2-6m-23≥0 (*)

Theo viet { x1+x2=1-m ; x1x2=m+6

db <=> ( x1+x2)2-2x1x2=10

⇔ (1-m)2-2(m+6)=10

⇔ m2-4m -21 =0

⇔[m=7 ; m=-3

Thay vao (*) =>m=7 (loai) ; m=-3 (tm)

c/ Ta co :△' = (-m)2-(3m-2)

= m2-3m+2

De ptr co 2 nghiem x1 , x2 thi : △' ≥0

⇔m2-3m+2≥0 (*)

Theo viet { x1+x2=2m ; x1x2=3m-2

db <=> ( x1+x2)2-3x1x2=4

⇔ (2m)2-3(3m-2)=4

⇔ 4m2--9m+2 =0

⇔[m=2 ; m=\(\dfrac{1}{4}\)

Thay vao (*) =>m=2 (tm) ; m=\(\dfrac{1}{4}\) (tm)

d/ Ta co : △=(-3)2-4(m-2)

=17-4m

De ptr co 2 nghiem x1 , x2 thi : △ ≥0

⇔17-4m≥0

⇔m≤\(\dfrac{17}{4}\)

theo viet{ x1+x2=3 ; x1x2= m-2

⇔(x1+x2)3-3x1x2(x1+x2) =9

⇔33-3.3(m-2)=9

⇔m=4(tm)

Câu 1 1. Cho parabol (P): y=\(x^2-2\left(m-1\right)x-m^3+\left(m+1\right)^2\). Giả sử (P) cắt Ox tại 2 điểm có hoành độ x1 , x2 thỏa mãn điều kiện x1+x2 \(\le\) 4. Tìm GTLN và GTNN của biểu thức sau: P = \(x^{_13}+x^{_23}+x_1x_2\left(3x_1+3x_2+8\right)\) 2. Giải phương trình: \(\sqrt{x^4-x^2+4}+\sqrt{x^4+20x^2+4}=7x\) Câu 2: 1. Cho parabol (P): \(y=x^2-2mx+m^2-2m+4\). Tìm tất cả các giá trị thực của m để (P) cắt Ox tại 2 điểm...
Đọc tiếp

Câu 1

1. Cho parabol (P): y=\(x^2-2\left(m-1\right)x-m^3+\left(m+1\right)^2\). Giả sử (P) cắt Ox tại 2 điểm có hoành độ x1 , x2 thỏa mãn điều kiện x1+x2 \(\le\) 4. Tìm GTLN và GTNN của biểu thức sau: P = \(x^{_13}+x^{_23}+x_1x_2\left(3x_1+3x_2+8\right)\)

2. Giải phương trình: \(\sqrt{x^4-x^2+4}+\sqrt{x^4+20x^2+4}=7x\)

Câu 2:

1. Cho parabol (P): \(y=x^2-2mx+m^2-2m+4\). Tìm tất cả các giá trị thực của m để (P) cắt Ox tại 2 điểm có hoành độ không âm x1, x2. Tính theo m giá trị của biểu thức \(P=\sqrt{x_1}+\sqrt{x_2}\) và tìm giá trị nhỏ nhất của P.

2. Giải bất phương trình: \(\frac{3-2\sqrt{x^2+3x+2}}{1-2\sqrt{x^2-x+1}}>1\)

Câu 3:

1. Cho hàm số \(y=f\left(x\right)=mx^2-2\left(m-1\right)x+m-2\). Tìm m để trên đồ thị của \(f\left(x\right)\)có 2 điểm \(A\left(x_A;y_A\right),B\left(x_B,y_B\right)\)thỏa mãn: \(2x_A-y_A-3=0,2x_B-y_B-3=0\)\(AB=\sqrt{5}\)

2. Giải phương trình: \(x\sqrt{x}-1=\left(\sqrt{x}-1\right).\sqrt{2x^2-3x+2}\)

Câu 4:

1. Cho parabol (P): \(y=x^2-\left(m-1\right)x+\left(2m^2-8m+6\right)\). Giả sử (P) cắt Ox tại 2 điểm có hoành độ \(x_1,x_2\). Tìm GTLN và GTNN của biểu thức \(P=\left|x_1x_2-2\left(x_1+x_2\right)\right|\)

2. Giải bất phương trình: \(\left(2x-5-\sqrt{x^2-x-25}\right)\sqrt{x^2-5x+6}\le0\)

Câu 5:

1. Cho parabol (P): \(y=-x^2\) và đường thẳng d đi qua điểm I (0; -1). và có hệ số góc là k. Gọi A và B là các giao điểm của (P) và d. Giả sử A, B lần lượt có hoành độ là \(x_1,x_2\)

a. Tìm k để trung điểm của đoạn AB nằm trên trục tung.

b. Tìm GTNN của biểu thức: \(P=\left|x^3_1-x^3_2\right|\)

2. Giải phương trình: \(1+\left(6x+2\right)\sqrt{2x^2-1}=2\left(5x^2+4x\right)\)

0
14 tháng 9 2020

\(\Delta=\left(-m\right)^2-4\left(m-1\right).1=\left(m-2\right)^2\)

\(\Rightarrow\)Pt có hai nghiệm phân biệt \(\forall m\ne2\)

\(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}}\),\(\Rightarrow x_1^2+x_2^2=\left(m-1\right)^2+1\) thay vào B:

\(B=\frac{2\left(m-1\right)+3}{\left(m-1\right)^2+1+2\left[\left(m-1\right)+1\right]}\)

\(B=\frac{2m+1}{m^2+2}\)

Mình chỉ biết làm đến đấy thôi, xl bạn T_T.
 

15 tháng 9 2020

Giờ mình ra GTNN rồi

\(B=\frac{2m+1}{m^2+2}\)

\(B=\frac{\frac{1}{2}\left(m^2+4m+4\right)-\frac{1}{2}\left(m^2+2\right)}{m^2+2}=\frac{\left(m+2\right)^2}{2\left(m^2+2\right)}-\frac{1}{2}\ge\frac{-1}{2}\)

\(\Rightarrow B_{min}=\frac{-1}{2}\)tại \(m=-2\)

21 tháng 11 2022

Câu 2:

\(\Delta=\left(-4\right)^2-4\left(m+1\right)=16-4m-4=-4m+12\)

Để phương trình có hai nghiệm thì -4m+12>=0

=>m<=3

Để pt có 2 nghiệm cùng dấu thì x1*x2>0

=>m+1>0

=>m>-1