K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 4 2019

Đề bài sai. Bạn xem lại.

29 tháng 4 2019

a> Ta có: Δ= \(\left[-2\left(m-1\right)\right]^2\) - 4.1. \(m^2\)

= 4(\(m^2\)- 2m+1)- \(4m^2\)

= 4\(m^2\) - 8m +4 - 4\(m^2\)

= - 8m +4

Để phương trình (1) luôn có 2 nghiêm phân biệt -> Δ > 0

⇔ -8m + 4 > 0

⇔ -8m > -4

⇔ m < \(\frac{1}{2}\)

Vậy với m < \(\frac{1}{2}\) thì phương trình (1) luôn có 2 nghiệm phân biệt

26 tháng 2 2021

x2 - 2( m + 1 )x + 2m - 4 = 0

1. Δ = b2 - 4ac = [ -2( m + 1 ) ]2 - 4( 2m - 4 )

= 4( m + 1 )2 - 8m + 16

= 4( m2 + 2m + 1 ) - 8m + 16

= 4m2 + 8m + 4 - 8m + 16

= 4m2 + 20

Dễ nhận thấy Δ ≥ 20 > 0 ∀ m

hay phương trình luôn có nghiệm với mọi m ( đpcm )

2. Dù là nghiệm kép hay nghiệm phân biệt thì hai nghiệm của phương trình đều viết được dưới dạng 

\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\text{Δ}}}{2a}=\frac{2m+2+\sqrt{4m^2+20}}{2}\\x_2=\frac{-b-\sqrt{\text{Δ}}}{2a}=\frac{2m+2-\sqrt{4m^2+20}}{2}\end{cases}}\)

Khi đó \(x_1^2+x_2^2=\left(\frac{2m+2+\sqrt{4m^2+20}}{2}\right)^2+\left(\frac{2m+2-\sqrt{4m^2+20}}{2}\right)^2\)

\(=\left(\frac{2m+2+2\sqrt{m^2+5}}{2}\right)^2+\left(\frac{2m+2-2\sqrt{m^2+5}}{2}\right)^2\)( em đưa 2 ra ngoài căn chắc chị hiểu )

\(=\left(\frac{2\left(m+1+\sqrt{m^2+5}\right)}{2}\right)^2+\left(\frac{2\left(m+1-\sqrt{m^2+5}\right)}{2}\right)^2\)

\(=\left(m+1+\sqrt{m^2+5}\right)^2+\left(m+1-\sqrt{m^2+5}\right)^2\)

\(=\left[\left(m+1\right)+\sqrt{m^2+5}\right]^2+\left[\left(m+1\right)-\sqrt{m^2+5}\right]^2\)

\(=\left(m+1\right)^2+2\left(m+1\right)\sqrt{m^2+5}+m^2+5+\left(m+1\right)^2-2\left(m+1\right)\sqrt{m^2+5}+m^2+5\)

\(=2\left(m+1\right)^2+2m^2+10\)

\(=2\left(m^2+2m+1\right)+2m^2+10\)

\(=2m^2+4m+2+2m^2+10=4m^2+4m+12\)

3. Em mới lớp 8 nên chưa học Min Max mấy dạng này chị thông cảm :(((((((((

26 tháng 2 2021

à xin phép em sửa một tí :))

1. ... = 4m2 + 20

Dễ nhận thấy Δ ≥ 20 > 0 ∀ m

hay phương trình luôn có hai nghiệm phân biệt với mọi m ( đpcm )

2. Vì phương trình luôn có hai nghiệm phân biệt nên hai nghiệm đó luôn viết được dưới dạng : ...

em quên nhìn cái " luôn có hai nghiệm phân biệt " sorry chị :(

ta có:

\(\Delta b^2-4ac=4\left(m-1\right)^2-4\left(2m-4\right)=4m^2-8m+4-8m+16\)

\(=4m^2-16m+20=\left(2m-4\right)^2+4>0\)

=>pt luôn có 2 nghiệm phân biệt

=>đpcm

theo viet ta có:

x1+x2=2m-2

x1.x2=2m-4

x12+x22=(x1+x2)2-2x1.x2

=(2m-2)2-2(2m-4)

=4m2-8m+4-4m+8

=4m2-12m+12

=(2m-3)2+3\(\ge\)3

Vậy Min A=x12+x22=3 khi m=3/2

c,để pt có 2 nghiệm đều dương

\(\Rightarrow\hept{\begin{cases}S>0\\P>0\end{cases}\Leftrightarrow\hept{\begin{cases}2m-2>0\\2m-4>0\end{cases}\Leftrightarrow}m>2}\)

Xin lựa a;b ... c;d e rỗng tuếch :>> (ko bt đúng ko nữa).

a, Thay m = 5 vào biểu thức ta đc 

 \(x^2-2\left(5+6\right)x+5-4=0\)

\(x^2-33x+1=0\)

\(\Delta=\left(-33\right)^2-4.1.1=1089-4=1085>0\)

Nên phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{33-\sqrt{1085}}{2};x_2=\frac{33+\sqrt{1085}}{2}\)

b, Ta có :

\(\Delta=\left(2m-2\right)^2-4\left(m-4\right)=4m^2-4-4m+16=4m^2-4m+12\)

\(=\left(4m^2-4m+1\right)+11\ge11\forall m\)

Vậy phuwong trình có 2 nghiệm phân biệt vs mọi x 

13 tháng 4 2017

*,với m=-2 thì bạn thay vào pt rồi giải như thường nha

*,\(\Delta\)=[-2(m+1)]2-4(2m-4)=4(m2+2m+1)-8m+16=4m2+8m +4-8m+16=4m2+20>0

=> phương trình luôn có 2 nghiệm phân biệt

*, theo hệ thức Vi et x1+x2=2(m+1);x1x2=2m-4

Ta có A=(x1+x2)2-2x1x2

Bạn thay vào rồi tính ra đc A=4m2+4m +12=(2m)2+4m+1+11=(2m+1)2+11 lớn hơn hoặc = 11

dấu = xảy ra khi 2m+1=0=> m=-1/2