Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tự giải
b) xét denta, đặt điều kiện của m
xét viet x1+x2 vs x1.x2
từ x1^3x2 + x1x2^3 =-11 => x1x2(x1^2+x2^2) = -11 =>x1x2((x1+x2)^2)-2x1x2) =-11
thế viet vao giải, nhơ so sánh đk
a) Hoành độ giao điểm của ( P ) và ( d ) là nghiệm phương trình:
\(x^2=2mx-2m+3\) (2)
<=> \(x^2-2mx+2m-3=0\)
Có: \(\Delta'=m^2-\left(2m-3\right)=m^2-2m+3=\left(m-1\right)^2+2>0\)với mọi m
=> Với mọi m phương trình (2) luôn có hai nghiệm phân biết
=> Với mọi m (d) luôn cắt ( P ) tại hai điểm phân biệt
___________
c) Để phương trình (1) có nghiệm điều kiện là: \(\Delta'=\left(k-1\right)^2-\left(k-3\right)=k^2-3k+4=\left(k-\frac{3}{2}\right)^2+\frac{7}{4}>0\)với mọi m
=> Phương trình (1) có 2 nghiệm \(x_1;x_2\)với mọi m
Áp dụng định lí viets ta có: \(\hept{\begin{cases}x_1+x_2=2\left(k-1\right)\\x_1.x_2=k-3\end{cases}}\)mà \(x_1=\frac{5}{3}x_2\)
nên : \(\frac{5}{3}x_2+x_2=2k-2\)<=> \(\frac{8}{3}x_2=2k-2\)<=> \(x_2=\frac{3}{4}\left(k-1\right)\)
khi đó: \(x_1=\frac{5}{3}x_2=\frac{5}{4}\left(k-1\right)\)
Suy ra \(x_1.x_2=k-3\)<=> \(\frac{15}{16}\left(k-1\right)^2=k-3\)
<=> \(15k^2-46k+63=0\)(3)
có: \(\Delta\)<0
=> (3) vô nghiệm
=> không tồn tại k
- Phương trình: \(x^2-2\left(m+1\right)x+m^2+4=0\)có 2 nghiệm \(x_1;x_2\)thì
\(\Delta^'=b^'^2-ac=\left(m+1\right)^2-\left(m^2+4\right)=2m-3\ge0\Rightarrow m\ge\frac{3}{2}\)(1)
- Và\(x_1;x_2\)thỏa mãn:
- \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2\left(m+1\right)\\x_1x_2=\frac{c}{a}=m^2+4\end{cases}}\)
- Do đó \(P=x_1+x_2-x_1x_2=2\left(m+1\right)-\left(m^2+4\right)=-m^2+2m-2\)
\(=-\left(m^2-2m+1\right)-1=-\left(m-1\right)^2-1\)(với \(m\ge\frac{3}{2}\))
- Ta lại có với \(m\ge\frac{3}{2}\)tức là \(m-1\ge\frac{1}{2}>0\)thì hàm số \(P\left(m\right)=-\left(m-1\right)^2-1\)là nghịch biến trong khoảng [\(\frac{3}{2};+\infty\)); tức là P lớn nhất khi m nhỏ nhất. Vậy khi m nhỏ nhất bằng \(\frac{3}{2}\)thì phương trình đã cho có 2 nghiệm \(x_1=x_2=\frac{5}{2}\)và P đạt giá trị lớn nhất = \(-\frac{5}{4}\).
\(\Delta'=\left(m-1\right)^2-m^2-4\)
\(\Delta'=m^2-2m-m^2+1-4\)
\(\Delta'=-2m-3\)
Để pt có 2 nghiệm phân biệt \(\Rightarrow\)\(\Delta'\ge0\)\(\Rightarrow-2m-3\ge0\)
\(\Leftrightarrow m\le-\frac{3}{2}\)
Theo vi-ét\(\Rightarrow\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+4\end{cases}}\)
\(P=x_1+x_2-x_1x_2\)
\(P=2m+1-m^2-4\)
\(P=-m^2+2m-3\)
\(P=\left(1-m\right)^2-2\)
\(\left(1-m\right)^2-2\ge-2\Rightarrow P\ge-2\)
MIN \(P=-2\)khi\(m=1\)
MAX \(P=\frac{-1}{2}\)khi \(m=\frac{5}{4}\)
\(\Delta=9-4\left(k-1\right)=13-4k\ge0\Rightarrow k\le\dfrac{13}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=k-1\end{matrix}\right.\)
\(\left(x_1-x_2\right)\left(x_1+x_2\right)=15\Leftrightarrow x_1-x_2=5\)
Kết hợp hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=3\\x_1-x_2=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=4\\x_2=-1\end{matrix}\right.\)
\(x_1x_2=k-1\Rightarrow k-1=-4\Rightarrow k=-3\)
Thầy giúp em bài này với ạ
tìm x,y nguyên thỏa mãn x^2+y^2+5x^2y^2+60=37xy