Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=b^2-4ac=m^2+16\)
=> Pt luôn có 2 nghiệm phân biệt
Theo Vi-ét : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1\cdot x_2=\frac{c}{a}=-4\end{cases}}\)
Thay vào A ta được : \(A=\frac{2m+7}{m^2+8}\)
=> Min A = -1/8 khi m=-8
dùng đen ta phẩy để giải pt.
kết quả khi m > \(\frac{5}{6}\)thì pt có nghiệm
theo vi-ét ta có: x1 + x2 = \(\frac{-b}{a}=\frac{2\left(m-2\right)}{1}=2\left(m-2\right)\)(1)
x1 . x2 = \(\frac{c}{a}=\frac{m^2+2m-3}{1}=m^2+2m-3\)(2)
theo đầu bài ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}\)
<=> \(\frac{x_2+x_1}{x_1.x_2}=\frac{x_1+x_2}{5}\)(3)
thay (1) và (2) vào (3) r tính m. kết quả khi m=2 thì pt có nghiệm thỏ mãn đk đó.
\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)
nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\).
Theo định lí Viete:
\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)
\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)
\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)
Dấu \(=\)xảy ra khi \(m=-1\).
\(x^2-2\left(m+1\right)x+3\left(m+1\right)-3=0\)
\(x^2-2nx+3n+3=\left(x-n\right)^2-\left(n^2-3n+3\right)=0\)\(\left(x-n\right)^2=\left(n-\frac{3}{2}\right)^2+\frac{3}{4}=\frac{\left(2n-3\right)^2+3}{4}>0\forall n\) vậy luôn tồn tại hai nghiệm
\(\orbr{\begin{cases}x_1=\frac{n-\sqrt{\left(2n-3\right)^2+3}}{2}\\x_2=\frac{n+\sqrt{\left(2n-3\right)^2+3}}{2}\end{cases}}\)
a) \(\frac{x_1}{x_2}=\frac{4x_1-x_2}{x_1}\Leftrightarrow\frac{x_1^2-4x_1x_2+x_2^2}{x_1x_2}=0\)
\(x_1x_2=n^2-\frac{\left(2n-3\right)^2+3}{4}=\frac{4n^2-4n^2+12n-9-3}{4}=3n-3\)
với n=1 hay m=0 : Biểu thức cần C/m không tồn tại => xem lại đề
Nếu đề bài là
Tính P=\(\frac{x_1^2+x_1-1}{x_1}\)-\(\frac{x_2^2+x_2-1}{x_2}\)
Thì lời giải như sau:
Theo định lý Viete, ta có:
x1.x2=-1
Khi đó P=\(\frac{x_1^2+x_1+x_1.x_2}{x_1}\)-\(\frac{x_2^2+x_2+x_1.x_2}{x_2}\)
Do x1 và x2 không thể bằng không nên ta chia tử mẫu của mỗi hạng tử cho x1,x2
Khi đó P=x1+x2+1-(x2+x1+1)=0
Chào ng đẹp
Xét đenta thì ta thấy đenta>0
áp dụng viét
x1*x2=2m-4
x1+x2=m
=>x1*x2/(x1+x2)=m/(2m-4)
Ta có m chia 2m-4 =1/2 dư 2
nên để A có gtrị nguyên thì m=(2m-4)*1/2+2
Giải pt ra tìm m
dùng denta hoặc vi-ét mà giải