Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Để PT là PT bậc nhất 1 ẩn thì:
$m^2-m+1\neq 0$
$\Leftrightarrow (m-\frac{1}{2})^2+\frac{3}{4}>0$
Điều này luôn đúng với mọi $m\in\mathbb{R}$ do $(m-\frac{1}{2})^2+\frac{3}{4}\geq 0+\frac{3}{4}>0$ với mọi $m\in\mathbb{R}$
Vậy có vô số số thực $m$ thỏa mãn điều kiện đề.
a: Phương trình có dạng ax+b=0 khi a<>0 được gọi là phương trình bậc nhất một ẩn
Phương trình 2x-5=2x+3 là phương trình bậc nhất một ẩn
c: Hai phương trình tương đương là hai phương trình có cùng tập nghiệm
(2m - 1)x + 3 - m = 0 là phương trình bậc nhất một ẩn
⇔ 2m - 1 ≠ 0
⇔ m ≠ 1/2
y = 0 có phải là phương trình bậc nhất 1 ẩn ( khoông)
0.x + 5 = 0 có phải là phương trình bậc nhất 1 ẩn( phải)
-t - 2 = 0 có phải là phương trình bậc nhất 1 ẩn( không)
Để phương trình (2m-1)x+3-m=0 (1) là phương trình bậc nhất một ẩn thì :
\(\Rightarrow a\ne0\)
\(\Leftrightarrow2m-1\ne0\)
\(\Leftrightarrow2m\ne1\)
\(\Leftrightarrow m\ne\frac{1}{2}\)
Vậy \(m\ne\frac{1}{2}\)thì phương trình (1) là phương trình bậc nhất một ẩn
\(\Leftrightarrow m\ne\frac{1}{2}\)\(\Leftrightarrow m\ne\frac{1}{2}\)
\(a,PT\Leftrightarrow\left(1-2m\right)x=m+4\)
Bậc nhất \(\Leftrightarrow1-2m\ne0\Leftrightarrow m\ne\dfrac{1}{2}\)
\(b,x=2\Leftrightarrow2-4m-m-4=0\Leftrightarrow m=-\dfrac{2}{5}\\ c,m=5\Leftrightarrow-9x-9=0\Leftrightarrow x=-1\)
để \(\left(2m-1\right)x+3-m=0\) là phương trình bậc nhất 1 ẩn
thì \(2m-1\ne0\Leftrightarrow m\ne\frac{1}{2}\)
Để \(\left(2m-1\right)x+3-m=0\) là phương trình bậc nhất 1 ẩn
\(\Rightarrow2m-1\ne0\)
\(\Rightarrow2m\ne1\Leftrightarrow m\ne\frac{1}{2}\)
Vậy.....................
a,để PT trở thành bậc nhất một ản thì m-3\(\ne0\Leftrightarrow m\ne3\)
thay x=2 vào biểu thức ta có m=-143(tm)
minh moi hok lop 6