K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2022

\(\Delta=\left[-2\left(m-1\right)\right]^2-4.\left(-2\right)\)

   \(=4m^2-8m+8+8\)

   \(=4m^2-8m+16\)

   \(=3m^2+\left(m-4\right)^2\)

Để pt có 2 nghiệm phân biệt thì \(\Delta>0\)

                                                  \(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m>4\end{matrix}\right.\) \(\rightarrow m>4\)

Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\left(1\right)\\x_1x_2=-2\end{matrix}\right.\)

\(A=x_1^2+4x_2^2\)

\(A=x_1^2+\left(2x_2\right)^2\)

\(\Rightarrow Min_A=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=0\\x_2=0\end{matrix}\right.\)

Thế vào (1) ta được: \(0=2m-2\)

                                \(\Leftrightarrow m=1\)

 

a) Thay m=1 vào phương trình, ta được:

\(x^2-6\cdot x+5=0\)

a=1; b=-6; c=5

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{5}{1}=5\)

b) Ta có: \(x^2-\left(m+5\right)x-m+6=0\)

a=1; b=-m-5; c=-m+6

\(\Delta=b^2-4ac\)

\(=\left(-m-5\right)^2-4\cdot1\cdot\left(-m+6\right)\)

\(=\left(m+5\right)^2-4\left(-m+6\right)\)

\(=m^2+10m+25+4m-24\)

\(=m^2+14m+1\)

\(=m^2+14m+49-48\)

\(=\left(m+7\right)^2-48\)

Để phương trình có hai nghiệm phân biệt thì \(\left(m+7\right)^2\ge48\)

\(\Leftrightarrow\left[{}\begin{matrix}m+7\ge4\sqrt{3}\\m+7\le-4\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m\ge4\sqrt{3}-7\\m\le-4\sqrt{3}-7\end{matrix}\right.\)

Vì x1,x2 là hai nghiệm của phương trình (1) nên ta có:

\(\left\{{}\begin{matrix}x_1^2-\left(m+5\right)x_1-m+6=0\\x_2^2-\left(m+5\right)x_2-m+6=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1^2=\left(m+5\right)x_1+m-6\\x_2^2=\left(m+5\right)x_2+m-6\end{matrix}\right.\)

Ta có: \(x_1^2+x_1\cdot x_2^2=24\)

\(\Leftrightarrow\left(m+5\right)x_1+m-6+x_1\cdot\left[\left(m+5\right)x_2+m-6\right]=24\)

\(\Leftrightarrow\left(m+5\right)x_1+m-6+\left(m+5\right)\cdot x_1x_2+x_1\left(m-6\right)=24\)

Xin lỗi bạn, đến đây mình thua

6 tháng 7 2021

a, khi m=1

\(=>x^2-6x+5=0\)

\(=>a+b+c=0=>\left[{}\begin{matrix}x1=1\\x2=5\end{matrix}\right.\)

b,\(\Delta=\left[-\left(m+5\right)\right]^2-4\left(-m+6\right)=m^2+10m+25+4m-24\)

\(=m^2+14m+1=m^2+2.7m+49-48\)\(=\left(m+7\right)^2-48\)

pt (1) có nghiệm \(< =>\left(m+7\right)^2-48\ge0\)

\(< =>\left[{}\begin{matrix}m\ge-7+4\sqrt{3}\\m\le-7-4\sqrt{3}\end{matrix}\right.\)

theo vi ét \(=>\left\{{}\begin{matrix}x1+x2=m+5\\x1x2=-m+6\end{matrix}\right.\)

tui nghĩ là đề thế này \(x1^2x2+x1x2^2=24=>x1x2\left(x1+x2\right)=24\)

\(=>\left(6-m\right)\left(m+5\right)=24\)

\(< =>-m^2-5m+6m+30-24=0\)

\(< =>-m^2+m+6=0\)

\(\Delta=1^2-4\left(-1\right).6=25>0\)

\(=>\left[{}\begin{matrix}m1=\dfrac{-1+\sqrt{25}}{2\left(-1\right)}=-2\left(loai\right)\\m2=\dfrac{-1-\sqrt{25}}{2\left(-1\right)}=3\left(tm\right)\end{matrix}\right.\)

 

16 tháng 5 2022

△'=(-2)2-1(m-1)

   =4-m+1

   =5-m

Để PT có 2 no pb thì △'>0

⇒5-m>0

⇒m<5

theo vi-ét ta có

\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m-1\end{matrix}\right.\)

mà: \(x^2_1x_2+x_1x_2^2-2\left(x_1+x_2\right)=0\)

\(\left(x_1x_2\right)\left(x_1+x_2\right)-2\left(x_1+x_2\right)=0\)

\(\left(m-1\right)4-2\cdot4=0\)

\(4m-4-8=0\)

⇔4m-12=0

⇔4m=12

⇔m=3

Vậy ...

Bài 2: 

Ta có: \(\text{Δ}=\left(2m+2\right)^2-4\cdot\left(m^2+4m+3\right)\)

\(=4m^2+8m+4-4m^2-16m-12\)

\(=-8m-8\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

hay m<-1

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=-2m-2\\x_1x_2=m^2+4m+3\end{matrix}\right.\)

Ta có: \(2x_1+2x_2-x_1x_2+7=0\)

\(\Leftrightarrow2\left(x_1+x_2\right)-x_1x_2+7=0\)

\(\Leftrightarrow2\cdot\left(-2m-2\right)-m^2-4m-3+7=0\)

\(\Leftrightarrow-4m-4-m^2-4m+4=0\)

\(\Leftrightarrow m\left(m+8\right)=0\)

\(\Leftrightarrow m=-8\)

 

16 tháng 7 2021

Ta có: \(\Delta'=m^2+2m+1-m^2-4m-3=-2m-2\)

Để PT có 2 nghiệm thì \(-2m-2\ge0\Leftrightarrow m\le-1\)

Theo viet \(\left\{{}\begin{matrix}x_1+x_2=-2m-2\\x_2x_2=m^2+4m+3\end{matrix}\right.\)

theo bài

\(2x_1+2x_2-x_1x_2+7=0\)

\(\Leftrightarrow2\left(x_1+x_2\right)-x_1x_2+7=0\)

Thay số:

\(2\left(-2m-2\right)-m^2-4m-3+7=0\)

\(\Leftrightarrow-m^2-8m=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-8\\m=0\left(loai\right)\end{matrix}\right.\)

Vậy ...

Chúc bạn học tốt

25 tháng 2 2022

\(\Delta=\left(m-2\right)^2+8>0\) với mọi m . Vậy pt có 2 nghiệm phân biệt với mọi m 

Do : \(x_1x_2=-8\) nên \(x_2=\dfrac{-8}{x1}\)

\(Q=\left(x_1^2-1\right)\left(x_2^2-4\right)=\left(x_1^2-1\right)\left(\dfrac{64}{x_1^2}-4\right)=68-4\left(x_1^2+\dfrac{16}{x_1^2}\right)\le68-4.8=36\)

\(\left(x_1^2+\dfrac{16}{x_1^2}\ge8\right)\)\(;Q=36\) khi và chỉ khi x1 = ( 2 ; -2 )

 

13 tháng 1 2023

`1)` Ptr có: `\Delta=3^2-4.5.(-1)=29 > 0 =>`Ptr có `2` nghiệm phân biệt

 `=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=-3/5),(x_1.x_2=c/a=-1/5):}`

Có: `A=(3x_1+2x_2)(3x_2+x_1)`

     `A=9x_1x_2+3x_1 ^2+6x_2 ^2+2x_1x_2`

    `A=8x_1x_2+3(x_1+x_2)^2=8.(-1/5)+3.(-3/5)^2=-13/25`

Vậy `A=-13/25`

____________________________________________________

`2)` Ptr có: `\Delta'=(-1)^2-7.(-3)=22 > 0=>` Ptr có `2` nghiệm pb

 `=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=2/7),(x_1.x_2=c/a=-3/7):}`

Có: `M=[7x_1 ^2-2x_1]/3+3/[7x_2 ^2-2x_2]`

     `M=[(7x_1 ^2-2x_1)(7x_2 ^2-2x_2)+9]/[3(7x_2 ^2-2x_2)]`

    `M=[49(x_1x_2)^2-14x_1 ^2 x_2-14x_1 x_2 ^2+4x_1x_2+9]/[3(7x_2 ^2-2x_2)]`

   `M=[49.(-3/7)^2-14.(-3/7)(2/7)+4.(-3/7)+9]/[3x_2(7x_2-2)]`

   `M=6/[x_2(7x_2-2)]`   `(1)`

Có: `x_1+x_2=2/7=>x_1=2/7-x_2`

 Thay vào `x_1.x_2=-3/7 =>(2/7-x_2)x_2=-3/7`

      `<=>-x_2 ^2+2/7 x_2+3/7=0<=>x_2=[1+-\sqrt{22}]/7`

`@x_2=[1+\sqrt{22}]/7=>M=6/[[1+\sqrt{22}]/7(7 .[1+\sqrt{22}]/2-2)]=2`

`@x_2=[1-\sqrt{22}]/7=>M=6/[[1-\sqrt{22}]/7(7 .[1-\sqrt{22}]/2-2)]=2`

Vậy `M=2`

20 tháng 5 2019

\(a)\) Để pt có hai nghiệm phân biệt \(x_1,x_2\) thì \(\Delta'=\left(1-m\right)^2-m^2+3m=1-2m+m^2-m^2+3m=m+1>0\)\(\Leftrightarrow\)\(m>-1\)

Vậy để pt có hai nghiệm phân biệt \(x_1,x_2\) thì \(m>-1\)

\(b)\) Ta có : \(T=x_1^2+x_2^2-\left(m-1\right)\left(x_1+x_2\right)+m^2-3m\)

\(T=\left(x_1+x_2\right)^2-2x_1x_2+\left(1-m\right)\left(x_1+x_2\right)+m^2-3m\)

Theo định lý Vi-et ta có : \(\hept{\begin{cases}x_1+x_2=2\left(1-m\right)\\x_1x_2=m^2-3m\end{cases}}\)

\(\Rightarrow\)\(T=4\left(1-m\right)^2-2\left(m^2-3m\right)-2\left(1-m\right)\left(1-m\right)+m^2-3m\)

\(T=4m^2-8m+4-2m^2+6m-2m^2+4m-2+m^2-3m\)

\(T=m^2-m+2=\left(m^2-m+\frac{1}{4}\right)+\frac{7}{4}=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(m=\frac{1}{2}\) ( thoả mãn ) 

Vậy GTNN của \(T=\frac{7}{4}\) khi \(m=\frac{1}{2}\)

30 tháng 4 2022

Bạn ơi, bạn xem lại đề có được không ạ? Là \(\left(x_1^2-2mx_1+3\right)\left(x_2^2-2mx_2-2\right)=50\) hay sao ạ?

30 tháng 4 2022

Hay là \(\left(x_1^2-2mx_2+3\right)\left(x_2^2-2mx_1-2\right)=50\) bạn nhỉ?