Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B.
Phương pháp:
Đưa phương trình về dạng tích, giải phương trình tìm nghiệm và tìm điều kiện để bài toán thỏa.
Chọn đáp án B
Phương trình tương đương với:
(1)
Đặt t = x 2 - 2 x + m , phương trình (1) đưa được về hệ:
Trừ theo vế của hai phương trình trong hệ trên, ta được:
Suy ra
Vẽ trên cùng một hệ trục tọa độ Oxy hai đường parabol P 1 : y = - x 2 + 3 x và P 2 : y = - x 2 + x + 1 (hình vẽ bên).
Xét phương trình hoành độ giao điểm của (P1) và (P2):
Suy ra (P1) cắt (P2) tại điểm 1 2 ; 5 4 .
Để phương trình đã cho có bốn nghiệm phân biệt
Đường thẳng y = m cắt (P1) tại hai điểm và cắt (P2) tại hai điểm.
Quan sát đồ thị ta thấy m ≤ 5 4 .
Vậy có 12 giá trị của m thỏa mãn yêu cầu bài toán.
Đáp án B
P T ⇔ log 2 2 x 2 - x + 2 m - 4 m 2 + log 2 x 2 + m x - 2 m 2 = 0 ⇔ 2 x 2 - x + 2 m - 4 m 2 = x 2 + m x - 2 m 2 > 0 ⇔ x 2 - ( m - 1 ) x + 2 m - 2 m 2 = 0 ( x - m ) ( x + 2 m ) > 0 ⇔ [ x = 2 m x = 1 - m x - m x + 2 m > 0
Điều kiện để pt đã cho có 2 nghiệm ⇔ 4 m 2 > 0 x - m x + 2 m > 0 ⇔ m ∈ - 1 ; 1 2 \ 0
Khi đó x 1 2 + x 2 2 > 1 ⇔ 4 m 2 + 1 - m 2 > 1 ⇔ 5 m 2 - 2 m > 0 ⇔ [ m > 2 5 m < 0
Do đó S = - 1 ; 0 ∪ 2 5 ; 1 2 ⇒ A = - 1 + 2 + 1 = 2
a)\(\Delta'=\left[\frac{-2.\left(m-1\right)}{2}\right]^2-m^2=m^2-2m+1-m^2=-2m+1\)
b)Để PT có hai nghiệm phân biệt thì \(\Delta'=-2m+1>0\Rightarrow m<\frac{1}{2}\)
Để PT có nghiệm kép thì: \(\Delta'=-2m+1=0\Rightarrow m=\frac{1}{2}\)
Để PT vô nghiệm thì: \(\Delta'=-2m+1<0\Rightarrow m>\frac{1}{2}\)
\(\Delta'=b'^2-ac\)
p/s b'=b/2