K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 9

Lời giải:
Để PT là PT bậc nhất 1 ẩn thì:

$m^2-m+1\neq 0$

$\Leftrightarrow (m-\frac{1}{2})^2+\frac{3}{4}>0$ 

Điều này luôn đúng với mọi $m\in\mathbb{R}$ do $(m-\frac{1}{2})^2+\frac{3}{4}\geq 0+\frac{3}{4}>0$ với mọi $m\in\mathbb{R}$
Vậy có vô số số thực $m$ thỏa mãn điều kiện đề.

12 tháng 4 2019

24 tháng 1 2021

a. m2 ≥ 0 ∀ m 

=>  m2 +1> 0 ∀ m 

b. m2 +2m +3 = m2 + 2m +1 +2 = (m + 1)2 + 2 > 0 ∀ m 

c. m2 ≥ 0 ∀ m

=>  m2 +2> 0 ∀ m 

d.   m2 - 2m +2 =  m2 -2m + 1 +1 =  (m - 1)2 + 1 > 0 ∀ m 

 

a) Để phương trình \(\left(m^2+1\right)x-3=0\) là phương trình bậc nhất một ẩn thì \(m^2+1\ne0\)

\(\Leftrightarrow m^2\ne-1\)

mà \(m^2\ge0\forall m\)

nên \(m^2\ne-1\forall m\)

\(\Leftrightarrow m^2+1\ne0\forall m\)

Vậy: Phương trình \(\left(m^2+1\right)x-3=0\) là phương trình bậc nhất một ẩn với mọi giá trị của tham số m

b) Để phương trình \(\left(m^2+2m+3\right)x+m-1=0\) là phương trình bậc nhất một ẩn thì \(m^2+2m+3\ne0\)

\(\Leftrightarrow\left(m+1\right)^2+2\ne0\)

mà \(\left(m+1\right)^2+2\ge2>0\forall m\)

nên \(\left(m+1\right)^2+2\ne0\forall m\)

hay \(m^2+2m+3\ne0\forall m\)

Vậy: Phương trình \(\left(m^2+2m+3\right)x+m-1=0\) luôn là phương trình bậc nhất một ẩn với mọi tham số m

c) Để phương trình \(\left(m^2+2\right)x-4=0\) là phương trình bậc nhất một ẩn thì \(m^2+2\ne0\)

\(\Leftrightarrow m^2\ne-2\)

mà \(m^2\ge0\forall m\)

nên \(m^2\ne-2\forall m\)

\(\Leftrightarrow m^2+2\ne0\forall m\)

Vậy: Phương trình \(\left(m^2+2\right)x+4=0\) là phương trình bậc nhất một ẩn với mọi giá trị của tham số m

d) Để phương trình \(\left(m^2-2m+2\right)x+m=0\) là phương trình bậc nhất một ẩn thì \(m^2-2m+2\ne0\)

\(\Leftrightarrow\left(m-1\right)^2+1\ne0\)

mà \(\left(m-1\right)^2+1\ge1>0\forall m\)

nên \(\left(m-1\right)^2+1\ne0\forall m\)

hay \(m^2-2m+2\ne0\forall m\)

Vậy: Phương trình \(\left(m^2-2m+2\right)x+m=0\) luôn là phương trình bậc nhất một ẩn với mọi tham số m

26 tháng 1 2017

16 tháng 8 2018

25 tháng 12 2021

\(a,PT\Leftrightarrow\left(1-2m\right)x=m+4\)

Bậc nhất \(\Leftrightarrow1-2m\ne0\Leftrightarrow m\ne\dfrac{1}{2}\)

\(b,x=2\Leftrightarrow2-4m-m-4=0\Leftrightarrow m=-\dfrac{2}{5}\\ c,m=5\Leftrightarrow-9x-9=0\Leftrightarrow x=-1\)

25 tháng 12 2021

cứu mik với

5 tháng 2 2017

11 tháng 2 2016

minh moi hok lop 6

18 tháng 9 2017

21 tháng 3 2022

a) m2+1\(\ge\)1 \(\forall\)m, suy ra phương trình đã cho là phương trình bậc nhất một ẩn với mọi m.

b) Nghiệm của phương trình đã cho là x=\(\dfrac{2m}{m^2+1}\) (*).

Áp dụng BĐT Co-si cho hai số dương m2 và 1, ta có:

m2+1\(\ge\)2\(\sqrt{m^2.1}\)=2|m|.

Dấu "=" xảy ra khi và chỉ khi m2=1 \(\Rightarrow\) m=\(\pm\)1.

Với m=1, x=1.

Với m=-1, x=-1.

So sánh hai giá trị của x, ta kết luận: giá trị m cần tìm là m=1.

22 tháng 3 2022

e cảm ơn ạ hehe