K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2019

Xét phương trình bậc hai một ẩn

ax2 + bx + c = 0 (a 0) và biệt thức = b2 – 4ac

TH1: Nếu < 0 thì phương trình vô nghiệm

TH2. Nếu = 0 thì phương trình có nghiệm

kép x1 = x2 = − b 2 a

TH3: Nếu > 0 thì phương trình có

hai nghiệm phân biệt x1, 2 = − b ± Δ 2 a

Đáp án cần chọn là: A

30 tháng 5 2019

Xét phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0)

với b = 2b’ và biệt thức Δ ' = b ' 2 − a c

Trường hợp 1: Nếu  Δ ' < 0 thì phương trình vô nghiệm

Trường hợp 2: Nếu  Δ ' = 0 thì phương trình có nghiệm kép x1 = x2 = − b ' a

Trường hợp 3: nếu Δ ' > 0 thì phương trình có hai nghiệm phân biệt

x1,2 = − b ' ± Δ ' a

Đáp án cần chọn là: D

29 tháng 8 2017

Đáp án A

Xét phương trình bậc hai a x 2  + bx + c = 0 (a ≠ 0) có biệt thức b = 2b'; Δ' = b ' 2  - ac:

• TH1: Nếu Δ' < 0 thì phương trình vô nghiệm

• TH2: Nếu Δ' = 0 thì phương trình có nghiệm kép x 1  = x 2  = Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

• TH3: Nếu Δ' > 0 thì phương trình có hai nghiệm phân biệt x 1 , 2  = Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

20 tháng 7 2019

Xét phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0)

với b = 2b’ và biệt thức  Δ ' = b ' 2 − a c

Trường hợp 1: Nếu ∆ < 0 thì phương trình vô nghiệm

Trường hợp 2: Nếu = 0 thì phương trình có nghiệm kép x1 = x2 = − b ' a

Trường hợp 3: nếu > 0 thì phương trình có hai nghiệm phân biệt

x1,2 = − b ' ± Δ ' a

Đáp án cần chọn là: A

19 tháng 12 2019

Đáp án A

Xét phương trình bậc hai một ẩn ax2 + bx + c = 0 (a ≠ 0) và biệt thức Δ = b2 - 4ac

• TH1: Nếu thì phương trình vô nghiệm

• TH2: Nếu thì phương trình có nghiệm kép x1 = x2 = Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

• TH3: Nếu thì phương trình có hai nghiệm phân biệt x1,2 = Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

18 tháng 2 2019

Đáp án A

Xét phương trình bậc hai a x 2 + b x + c = 0   ( a ≠ 0 ) có biệt thức b = 2b'; Δ ' = b ' 2 - a c :

• TH1: Nếu Δ' < 0 thì phương trình vô nghiệm

• TH2: Nếu Δ' = 0 thì phương trình có nghiệm kép x 1  = x 2  = Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

• TH3: Nếu Δ' > 0 thì phương trình có hai nghiệm phân biệt x 1 , 2  = Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

27 tháng 11 2019

Đáp án A

Xét phương trình bậc hai một ẩn a x 2 + b x + c = 0   ( a ≠ 0 ) và biệt thức Δ = b 2 - 4 a c

• TH1: Nếu thì phương trình vô nghiệm

• TH2: Nếu thì phương trình có nghiệm kép x 1  = x 2  = Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

• TH3: Nếu thì phương trình có hai nghiệm phân biệt x 1 , 2  = Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

20 tháng 5 2019

* Giả sử cả 3 pt đều có nghiệm kép hoặc vô nghiệm ta có : 

pt \(x^2-2ax+b=0\) (1) có \(\Delta_1'=\left(-a\right)^2-b=a^2-b\le0\)

pt \(x^2-2bx+c=0\) (2) có \(\Delta_2'=\left(-b\right)^2-c=b^2-c\le0\)

pt \(x^2-2cx+a=0\) (3) có \(\Delta_3'=\left(-c\right)^2-a=c^2-a\le0\)

\(\Rightarrow\)\(\Delta_1'+\Delta_2'+\Delta_3'=\left(a^2+b^2+c^2\right)-\left(a+b+c\right)\le0\) (*) 

Lại có : \(0< a,b,c< 3\)\(\Rightarrow\)\(\hept{\begin{cases}a\left(3-a\right)>0\\b\left(3-b\right)>0\\c\left(3-c\right)>0\end{cases}\Leftrightarrow\hept{\begin{cases}3a>a^2\\3b>b^2\\3c>c^2\end{cases}}}\)

\(\Rightarrow\)\(\left(a^2+b^2+c^2\right)-\left(a+b+c\right)< 3\left(a+b+c\right)-\left(a+b+c\right)=2\left(a+b+c\right)=6>0\)

trái với (*) 

Vậy có ít nhất một phương trình có hai nghiệm phân biệt 

cái kia chưa bt làm -_-