Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương pháp: Chia cả 2 vế cho 3x, đặt , tìm điều kiện của t.
Đưa về bất phương trình dạng
Cách giải :
Ta có
Đặt , khi đó phương trình trở thành
Ta có:
Vậy
Đặt t = 2 x ( t > 0 ) phương trình trở thành:
Xét hàm số trên khoảng 0 ; + ∞ có
Bảng biến thiên:
Với mỗi t > 0 cho một nghiệm duy nhất x = log 2 t Vậy phương trình có hai nghiệm thực phân biệt khi và chỉ khi (∗) có hai nghiệm phân biệt t > 0. Quan sát bảng biến thiên suy ra
Ta đi rút gọn Sm: Có
Do đó Vì vậy
Vậy điều kiện là
Có tất cả 27 số nguyên dương thoả mãn.
Chọn đáp án A.
a)\(\Delta'=\left[\frac{-2.\left(m-1\right)}{2}\right]^2-m^2=m^2-2m+1-m^2=-2m+1\)
b)Để PT có hai nghiệm phân biệt thì \(\Delta'=-2m+1>0\Rightarrow m<\frac{1}{2}\)
Để PT có nghiệm kép thì: \(\Delta'=-2m+1=0\Rightarrow m=\frac{1}{2}\)
Để PT vô nghiệm thì: \(\Delta'=-2m+1<0\Rightarrow m>\frac{1}{2}\)
Đáp án C
Vẽ đồ thị hàm số y = x 3 − 3 x 2 + 1
Để phương trình (1) có ba nghiệm phân biệt thỏa mãn x 1 < 1 < x 2 < x 3 thì đường thẳng y=m cắt đồ thị hàm số y = x 3 − 3 x 2 + 1 tại ba điểm phân biệt thỏa mãn x 1 < 1 < x 2 < x 3 ⇔ − 3 < m < − 1.
Đáp án B
Phương pháp: Đặt t = 2 x
Cách giải: Đặt t = 2 x ta có:
Khi đó phương trình trở thành
Để phương trình ban đầu có 3 nghiệm phân biệt có nghiệm