Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Thay m=-1 vào phương trình (1) ta được:
\(x^2-x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Vậy khi m=-1 thì phương trình (1) có \(S=\left\{2;-1\right\}\)
b/ Xét phương trình (1) có
\(\Delta=\left(m+2\right)^2-4.2m\)
= \(m^2-4m+4=\left(m-2\right)^2\)
Ta có: \(\left(m-2\right)^2\ge0\) với mọi m
\(\Leftrightarrow\Delta\ge0\) với mọi m
\(\Rightarrow\) Phương trình (1) có 2 nghiệm với mọi m
Áp dụng hệ thức Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1.x_2=2m\end{matrix}\right.\)
Theo đề bài ta có:
\(\left(x_1+x_2\right)^2-x_1x_2\le5\)
\(\Leftrightarrow\left(m+2\right)^2-2m\le5\)
\(\Leftrightarrow m^2+2m-1\le0\)
\(\Leftrightarrow\left(m+1-\sqrt{2}\right)\left(m+1+\sqrt{2}\right)\le0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m+1-\sqrt{2}\ge0\\m+1+\sqrt{2}\le0\end{matrix}\right.\\\left\{{}\begin{matrix}m+1-\sqrt{2}\le0\\m+1+\sqrt{2}\ge0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m\ge-1+\sqrt{2}\\m\le-1-\sqrt{2}\end{matrix}\right.\\\left\{{}\begin{matrix}m\le-1+\sqrt{2}\\m\ge-1-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-1+\sqrt{2}\le m\le-1-\sqrt{2}\left(ktm\right)\\-1-\sqrt{2}\le m\le-1+\sqrt{2}\left(tm\right)\end{matrix}\right.\)
vậy để phương trình (1) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\left(x_1+x_2\right)^2-x_1x_2\le5\) thì \(-1-\sqrt{2}\le m\le-1+\sqrt{2}\)
\(\Delta=\left(3m+2\right)^2-4.\left(m-4\right)=9m^2+8m+20=\left(3m\right)^2+2.3m.\frac{4}{3}+\frac{16}{9}+\frac{164}{9}=\left(3m+\frac{4}{3}\right)^2+\frac{164}{9}\ge\frac{164}{9}>0\)
=> pt luôn có 2 nghiệm x1; x2
=> \(x^2_1-\left(3m+2\right)x_1+m-4=0\)
Theo hệ thức Vi - ét có:
\(x_1+x_2=3m+2;x_1.x_2=m-4\)
=> \(x^2_1+x^2_2=\left(x_1+x_2\right)^2-2x_1.x_2=\left(3m+2\right)^2-2.\left(m-4\right)=9m^2+10m+12\)
\(A=2.\left(x^2_1+x_2^2\right)+\left(x^2_1-\left(3m+2\right)x_1+m-4\right)+4m+4\)
=> \(A=2.\left(9m^2+10m+12\right)+4m+4=18m^2+24m+28\)
=> \(A=18m^2+24m+28=2.\left(9m^2+12m+4\right)+20=2.\left(3m+2\right)^2+20\ge20\) với mọi m
=> A nhỏ nhất = 20 khi 3m + 2 = 0 <=> m = -2/3
a. vs m=-1 ,thay vào pt(1) ,ta đc :
x^2 -(-1+2)x +2.(-1) =0
<=>x^2 -x-2 =0
Có : đenta = (-1)^2 -4.(-2) =9 >0
=> căn đenta =căn 9 =3
=> X1 =2 ; X2=-1
Vậy pt (1) có tập nghiệm S={-1;2}
a/ \(\Delta'=m^2-5m^2+16=16-4m^2\ge0\Rightarrow-2\le m\le2\)
b/ Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=5m^2-16\end{matrix}\right.\)
\(A=5x_1^2+3x_1x_2-17x_1+5x_2^2+3x_1x_2-17x_2\)
\(\Rightarrow A=5\left(\left(x_1+x_2\right)^2-2x_1x_2\right)+6x_1x_2-17\left(x_1+x_2\right)\)
\(\Rightarrow A=5\left(x_1+x_2\right)^2-4x_1x_2-17\left(x_1+x_2\right)\)
\(\Rightarrow A=5\left(2m\right)^2-4\left(5m^2-16\right)-17.2m=64-34m\)
Mà \(-2\le m\le2\) \(\Rightarrow-4\le A\le132\)
\(\Rightarrow\left\{{}\begin{matrix}A_{max}=132\\A_{min}=-4\end{matrix}\right.\)
giải pt tìm x1 ; x 2 theo m
sau đó giải BPT tìm m thối.x1>1 và x2 < 6
denta= (2m-3)^2 -4(m^2-3m)=9>0 => pt luôn có 2 nghiệm phân biệt với mọi x
*x1=[2m-3+9]/2=m+3
*x2=[2m-3-9]/2=m-6
Theo bài ra ta có: hai nghiệm x1, x2 cùng dương <=> P>0 và S>0
=> m>3 thì hai nghiệm x1, x2 luôn cùng dương.
đenta ' = [-(m+1)]^2-m^2-4
= m^2+2m+1-m^2-4
=2m-3
để pt có 2 no x1,x2 thì đenta' lớn hơn hoặc = 0
<=> 2m-3>=0
<=> m<=3/2
khi đó theo hệ thức vi-ét tính dc:
x1+x2=2m+2
x1*x2=m^2+4
khi đó:
x1^2+2(m+1)x2=3(m^2+4)+4
<=>x1^2+(x1+x2)x2=3(x1x2)+4
<=> x1^2+x1x2+x2^2=3x1x2+4
<=> x1^2+x2^2+2x1x2=4x1x2+4
<=> (x1+x2)^2=4x1x2+4
thay chỗ hệ thức vi-ét tính đc thôi
hok tốt
a, Đặt \(x^2=t\left(t\ge0\right)\)
Khi đó \(PT< =>t^1+4t-5=0\)
\(< =>t^2-1+4t-4=0\)
\(< =>\left(t-1\right)\left(t+1\right)+4\left(t-1\right)=0\)
\(< =>\left(t-1\right)\left(t+5\right)=0\)
\(< =>\orbr{\begin{cases}t=1\left(tm\right)\\t=-5\left(loai\right)\end{cases}}\)
\(< =>x^2=1< =>\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
Vậy ...
Thay m = 2 vào , ta có :
\(PT< =>x^2-2\left(2+1\right)x+2^2+3.2-4=0\)
\(< =>x^2-6x+6=0\)
\(< =>\left(x^2-6x+9\right)-\sqrt{3}^2=0\)
\(< =>\left(x-3-\sqrt{3}\right)\left(x-3+\sqrt{3}\right)=0\)
\(< =>\orbr{\begin{cases}x=3+\sqrt{3}\\x=3-\sqrt{3}\end{cases}}\)