Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ac=-m^2-1< 0;\forall m\Rightarrow\) phương trình luôn có 2 nghiệm trái dấu với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-m^2-1\end{matrix}\right.\)
\(x_1^2+x_2^2=3\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=3\)
\(\Leftrightarrow m^2-2\left(-m^2-1\right)=3\)
\(\Leftrightarrow3m^2=1\)
\(\Leftrightarrow m^2=\dfrac{1}{3}\)
\(\Leftrightarrow m=\pm\dfrac{1}{\sqrt{3}}\)
xét delta
m2 + 4m2 + 4 = 5m2 + 4 > 0
=> phương trình luôn có 2 nghiệm x1x2
theo Vi-ét ta có:
\(\left\{{}\begin{matrix}x1+x2=m\\x1x2=-m^2-1\end{matrix}\right.\)
x12 + x22 = 3
<=> ( x1 +x2 )2 - 2x1x2 = 3
<=> m2 + 2m2 + 2 = 3
<=> 3m2 = 1
=> m2 = \(\dfrac{1}{3}\)
=> m = +- \(\dfrac{1}{\sqrt{3}}\)
\(\Delta'=\left(m+1\right)^2-5\ge0\Leftrightarrow m^2+2m-4\ge0\) (1)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=5\end{matrix}\right.\)
\(\dfrac{1}{\left|x_1\right|}+\dfrac{1}{\left|x_2\right|}=2\Leftrightarrow\dfrac{\left|x_1\right|+\left|x_2\right|}{\left|x_1x_2\right|}=2\)
\(\Leftrightarrow\left|x_1\right|+\left|x_2\right|=2\left|x_1x_2\right|=10\)
\(\Leftrightarrow x_1^2+x_2^2+2\left|x_1x_2\right|=100\)
\(\Leftrightarrow x_1^2+x_2^2+10=100\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=90\)
\(\Leftrightarrow4\left(m+1\right)^2-10=90\)
\(\Leftrightarrow\left(m+1\right)^2=25\Rightarrow\left[{}\begin{matrix}m=4\\m=-6\end{matrix}\right.\)
Thế vào (1) kiểm tra thấy đều thỏa mãn, vậy...
dạ pt có 2 nghiệm là chỉ lớn hơn không thôi chứ thầy sao có bằng 0 ạ
Lời giải:
Để pt có 2 nghiệm pb thì $\Delta=25-4(m-2)>0\Leftrightarrow m< \frac{33}{4}$
Áp dụng định lý Viet: $x_1+x_2=5$ và $x_1x_2=m-2$
Khi đó:
$x_1^2+4x_1+x_2=9$
$\Leftrightarrow x_1^2+3x_1+(x_1+x_2)=9$
$\Leftrightarrow x_1^2+3x_1+5=9\Leftrightarrow x_1^2+3x_1-4=0$
$\Leftrightarrow (x_1-1)(x_1+4)=0$
$\Leftrightarrow x_1=1$ hoặc $x_1=-4$
$x_1=1$ thì $x_2=4$
$\Rightarrow m-2=x_1x_2=4\Rightarrow m=6$
$x_1=-4$ thì $x_2=9$
$\Rightarrow m-2=x_1x_2=-36\Rightarrow m=-34$
Vì $m< \frac{33}{4}$ nên cả 2 giá trị này đều thỏa
Do phương trình có 2 nghiệm x1, x2
\(\Rightarrow\left\{{}\begin{matrix}S=x_1+x_2=5m\\P=x_1.x_2=5m-1\end{matrix}\right.\)
Ta có:
\(x_1^2+x_2^2=2\)
\(\left(x_1^2+2x_1x_2+x_2^2\right)-2x_1x_2=2\)
\(\left(x_1+x_2\right)^2-2x_1x_2-2=0\)
\(\left(5m^2\right)-2\left(5m-1\right)-2=0\)
\(25m^2-10m+2-2=0\)
\(25m^2-10m=0\)
\(5m\left(5m-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}m=0\\m=\dfrac{2}{5}\end{matrix}\right.\)
Vậy ...