K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2016

\(y>x>0\)\(\Rightarrow7=-2x+3y>-2x+3x=x\)

\(0< x< 7\Rightarrow x\in\left\{1;2;3;4;5;6\right\}\)

\(y=\frac{7+2x}{3}\)

Thay x vào y xem giá trị nào làm y nguyên thì nhận

4 tháng 8 2016

9/6+6/9=1

4 tháng 8 2016
(x;y)=(1;3);(4;5)
5 tháng 8 2016

Điều kiện  \(x\ge\frac{-1}{2}\)

Ta có : \(\sqrt{2x+1}+x^2-3x+1=0\)

\(\Leftrightarrow2\sqrt{2x+1}+2x^2-6x+2=0\)

\(\Leftrightarrow-\left(2x+1\right)+2\sqrt{2x+1}-1+2\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow2\left(x-1\right)^2-\left(\sqrt{2x+1}-1\right)^2=0\)

\(\Leftrightarrow\left[\sqrt{2}\left(x-1\right)-\sqrt{2x+1}+1\right].\left[\sqrt{2}\left(x-1\right)+\sqrt{2x+1}-1\right]=0\)

Tới đây bạn tự làm nhé!

7 tháng 8 2016

ĐKXĐ: \(x\ge-\frac{1}{2}\)

\(\sqrt{2x+1}+x^2-3x+1=0\)

\(\Rightarrow\sqrt{2x+1}=-x^2+3x-1\)

\(\Rightarrow2x+1=x^4-6x^3+11x^2-6x+1\)

\(\Rightarrow x^4-6x^3+11x^2-8x=0\)

\(\Rightarrow x\left(x^3-6x^2+11x-8\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x^3-6x^2+11x-8=0\left(1\right)\end{cases}}\)

(1) => bấm máy ta nhận đc 1 nghiệm như mà lẻ quá

                                       Vậy có 2 nghiệm

7 tháng 8 2016

\(\sqrt{2x+1}=t\ge0\)\(\Rightarrow x=\frac{t^2-1}{2}\)

thay vài phương trình đã cho và phân tích nhân tử, ta được:

\(pt\rightarrow\left(t+1\right)\left(t^3-t^2-7t+11\right)=0\)

\(\Leftrightarrow t^3-t^2-7t+11=0\text{ (1)}\)\(do\text{ }t+1>0\)

Bấm máy tính thấy phương trình này chỉ có 1 nghiệm âm, do đó ta chứng minh phương trình này ko có nghiệm dương

\(\left(1\right)\Leftrightarrow t\left(t^2-4t+4\right)+3t^2-11t+11=0\)

\(\Leftrightarrow t\left(t-2\right)^2+3\left(t-\frac{11}{6}\right)^2+\frac{11}{12}=0\)

Thấy ngay phương trình này có VT > 0 nên vô nghiệm.

Vậy phương trình đã cho VÔ NGHIỆM.

Cho mình hỏi xem cách làm này của mình có đúng không nhé.Đề bài: Tìm nghiệm nguyên dương của phương trình (x+y)4 = 40y+1 Bài giải:Đặt x+y=n với n>0 và n là số nguyên. Phương trình đã cho tương đương với: n4=40y+1.Vì x+y>y nên n>y.- Nếu n=1 thì y=0 (thỏa mãn n>y) =>(x+y)4=1 mà y=0 => x=1 (vì x>0)- Nếu n=2 thì 40y=15 => y=2,(6) là số hữu tỉ (loại)- Nếu n=3 thì y=2 (thỏa mãn n>y) => (x+y)4=81 => x=1 (vì...
Đọc tiếp

Cho mình hỏi xem cách làm này của mình có đúng không nhé.

Đề bài: Tìm nghiệm nguyên dương của phương trình (x+y)= 40y+1 

Bài giải:

Đặt x+y=n với n>0 và n là số nguyên. Phương trình đã cho tương đương với: n4=40y+1.Vì x+y>y nên n>y.

- Nếu n=1 thì y=0 (thỏa mãn n>y) =>(x+y)4=1 mà y=0 => x=1 (vì x>0)

- Nếu n=2 thì 40y=15 => y=2,(6) là số hữu tỉ (loại)

- Nếu n=3 thì y=2 (thỏa mãn n>y) => (x+y)4=81 => x=1 (vì x>0)

- Nếu n=4 thì 40y=255 => y=6,375 là số hữu tỉ và n<y (loại)

- Nếu n=5 thì 40y=624 => y=15,6 là số hữu tỉ và n<y (loại)

- Nếu n=6 thì 40y=1295 => y=32,375 là số hữu tỉ và n<y (loại)

- Nếu n=7 thì y=60 (loại vì n<y).

Vì n,y là 2 số nguyên dương nên từ phần trên suy ra n>7 thì không có giá trị nào của y thỏa mãn.

Vậy phương trình có 2 cặp nghiệm nguyên (x;y) là: (1;0) ; (1;2).

0
Cho mình hỏi xem cách làm này của mình có đúng không nhé.Đề bài: Tìm nghiệm nguyên dương của phương trình (x+y)4 = 40y+1 Bài giải:Đặt x+y=n với n>0 và n là số nguyên. Phương trình đã cho tương đương với: n4=40y+1.Vì x+y>y nên n>y.- Nếu n=1 thì y=0 (loại)- Nếu n=2 thì 40y=15 => y=2,(6) là số hữu tỉ (loại)- Nếu n=3 thì y=2 (thỏa mãn n>y) => (x+y)4=81 => x=1 (vì x>0)- Nếu n=4 thì 40y=255 => y=6,375 là số...
Đọc tiếp

Cho mình hỏi xem cách làm này của mình có đúng không nhé.

Đề bài: Tìm nghiệm nguyên dương của phương trình (x+y)= 40y+1 

Bài giải:

Đặt x+y=n với n>0 và n là số nguyên. Phương trình đã cho tương đương với: n4=40y+1.Vì x+y>y nên n>y.

- Nếu n=1 thì y=0 (loại)

- Nếu n=2 thì 40y=15 => y=2,(6) là số hữu tỉ (loại)

- Nếu n=3 thì y=2 (thỏa mãn n>y) => (x+y)4=81 => x=1 (vì x>0)

- Nếu n=4 thì 40y=255 => y=6,375 là số hữu tỉ và n<y (loại)

- Nếu n=5 thì 40y=624 => y=15,6 là số hữu tỉ và n<y (loại)

- Nếu n=6 thì 40y=1295 => y=32,375 là số hữu tỉ và n<y (loại)

- Nếu n=7 thì y=60 (loại vì n<y).

Vì n,y là 2 số nguyên dương nên từ phần trên suy ra n>7 thì không có giá trị nào của y thỏa mãn.

Vậy phương trình có 1 cặp nghiệm nguyên (x;y) là: (1;2).

1
7 tháng 10 2015

phân tích đúng ko 

L i k e đi

5 tháng 8 2016

\(pt\Leftrightarrow\left(x^3+2\sqrt{2}\right)+2x^2+2\sqrt{2}x=0\)

\(\Leftrightarrow\left(x+\sqrt{2}\right)\left(x^2-\sqrt{2}x+2\right)+2x\left(x+\sqrt{2}\right)=0\)

\(\Leftrightarrow\left(x+\sqrt{2}\right)\left[x^2+\left(2-\sqrt{2}\right)x+2\right]=0\)

\(\Leftrightarrow x=-\sqrt{2}\)

Cho mình hỏi xem cách làm này của mình có đúng không nhé.Đề bài: Tìm nghiệm nguyên dương của phương trình (x+y)4 = 40y+1 Bài giải:Đặt x+y=n với n>0 và n là số nguyên. Phương trình đã cho tương đương với: n4=40y+1.Vì x+y>y nên n>y.- Nếu n=1 thì y=0 (thỏa mãn n>y) =>(x+y)4=1 mà y=0 => x=1 (vì x>0)- Nếu n=2 thì 40y=15 => y=2,(6) là số hữu tỉ (loại)- Nếu n=3 thì y=2 (thỏa mãn n>y) => (x+y)4=81 => x=1 (vì...
Đọc tiếp

Cho mình hỏi xem cách làm này của mình có đúng không nhé.

Đề bài: Tìm nghiệm nguyên dương của phương trình (x+y)= 40y+1 

Bài giải:

Đặt x+y=n với n>0 và n là số nguyên. Phương trình đã cho tương đương với: n4=40y+1.Vì x+y>y nên n>y.

- Nếu n=1 thì y=0 (thỏa mãn n>y) =>(x+y)4=1 mà y=0 => x=1 (vì x>0)

- Nếu n=2 thì 40y=15 => y=2,(6) là số hữu tỉ (loại)

- Nếu n=3 thì y=2 (thỏa mãn n>y) => (x+y)4=81 => x=1 (vì x>0)

- Nếu n=4 thì 40y=255 => y=6,375 là số hữu tỉ và n<y (loại)

- Nếu n=5 thì 40y=624 => y=15,6 là số hữu tỉ và n<y (loại)

- Nếu n=6 thì 40y=1295 => y=32,375 là số hữu tỉ và n<y (loại)

- Nếu n=7 thì y=60 (loại vì n<y).

Vì n,y là 2 số nguyên dương nên từ phần trên suy ra n>7 thì không có giá trị nào của y thỏa mãn.

Vậy phương trình có 2 cặp nghiệm nguyên (x;y) là: (1;0) ; (1;2).

1
29 tháng 6 2016

bai ban giai dung roi do

25 tháng 1 2016

<=>\(\left(-2\right)x+3y=3y-2x\)

=>\(3y-2x=7\)

=>\(3y-2x-7=0\)

=>\(y=\frac{2x+7}{3}\)

..... ????