\(2x^2+\left(2m-1\right)x+m-1=0\) (1)

a) xác định m để (1) có 2...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\text{Δ}=\left(2m-1\right)^2-8\left(m-1\right)\)

\(=4m^2-4m+1-8m+8\)

\(=4m^2-12m+9=\left(2m-3\right)^2>=0\)

=>Pt luôn có hai nghiệm phân biệt

Theo đề, ta có: \(\left\{{}\begin{matrix}3x_1-4x_2=11\\x_1+x_2=\dfrac{-2m+1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_1-4x_2=11\\3x_1+3x_2=\dfrac{-6m+3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-7\cdot x_2=11-\dfrac{-6m+3}{2}=\dfrac{22+6m-3}{2}=\dfrac{6m+19}{2}\\3x_1=11+4x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{-6m-19}{14}\\x_1=\dfrac{1}{3}\left(4\cdot\dfrac{-6m-19}{14}+11\right)=\dfrac{1}{3}\left(\dfrac{-12m-38}{7}+11\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{-6m-19}{14}\\x_1=\dfrac{1}{3}\cdot\dfrac{-12m-38+77}{7}=\dfrac{-4m+13}{7}\end{matrix}\right.\)

Theo đề, ta có: \(\dfrac{-6m-19}{14}\cdot\dfrac{-4m+13}{7}=\dfrac{m-1}{2}\)

\(\Leftrightarrow m=-2\)

b: Để phươg trình có hai nghiệm đều dương thì (-2m+1)/2>0 và (m-1)/2>0

=>-2m+1>0 và m-1>0

=>m<1/2 và m>1

hay \(m\in\varnothing\)

AH
Akai Haruma
Giáo viên
12 tháng 1 2019

Bài I:

Trước tiên, để pt có thể có 2 nghiệm thì $m\neq 0$

PT có 2 nghiệm phân biệt \(\Leftrightarrow \Delta=(m+3)^2-4m(2m+1)>0\)

\(\Leftrightarrow -7m^2+2m+9>0\)

\(\Leftrightarrow -1< m< \frac{9}{7}\)

Áp dụng hệ thức Vi-et: \(\left\{\begin{matrix} x_1+x_2=\frac{m+3}{m}\\ x_1x_2=\frac{2m+1}{m}\end{matrix}\right.\)

Khi đó:
\(|x_1-x_2|=\sqrt{(x_1-x_2)^2}=\sqrt{x_1^2-2x_1x_2+x_2^2}=\sqrt{(x_1^2+2x_1x_2+x_2^2)-4x_1x_2}\)

\(=\sqrt{(x_1+x_2)^2-4x_1x_2}=\sqrt{\frac{(m+3)^2}{m^2}-\frac{4(2m+1)}{m}}\)

\(=\sqrt{\frac{-7m^2+2m+9}{m^2}}\)

Để \(|x_1-x_2|=2\Leftrightarrow \sqrt{\frac{-7m^2+2m+9}{m^2}}=2\)

\(\Rightarrow \frac{-7m^2+2m+9}{m^2}=4\Rightarrow 11m^2-2m-9=0\)

\(\Rightarrow \left[\begin{matrix} m=1\\ m=-\frac{9}{11}\end{matrix}\right.\) (đều thỏa mãn)

Vậy...........

AH
Akai Haruma
Giáo viên
12 tháng 1 2019

Câu II:

Để pt có 2 nghiệm pb thì:

\(\Delta=(2m-1)^2-8(m-1)>0\)

\(\Leftrightarrow 4m^2-12m+9>0\Leftrightarrow (2m-3)^2>0\Leftrightarrow m\neq \frac{3}{2}\)

Áp dụng hệ thức Vi-et: \(\left\{\begin{matrix} x_1+x_2=\frac{1-2m}{2}\\ x_1x_2=\frac{m-1}{2}\end{matrix}\right.(*)\)

a) Khi đó: \(3x_1-4x_2=11\)

\(\Leftrightarrow 7x_1-4(x_1+x_2)=11\)

\(\Leftrightarrow 7x_1=11+4(x_1+x_2)=11+2(1-2m)=13-4m\)

\(\Leftrightarrow x_1=\frac{13-4m}{7}\)

\(\Rightarrow x_2=\frac{1-2m}{2}-x_1=\frac{-19-6m}{14}\)

Suy ra:

\(\frac{m-1}{2}=x_1x_2=\frac{13-4m}{7}.\frac{-19-6m}{14}\)

\(\Leftrightarrow 49(m-1)=(13-4m)(-19-6m)\)

\(\Leftrightarrow 24m^2-51m-198=0\Rightarrow m=\frac{33}{8}\) hoặc $m=-2$ (đều thỏa mãn)

b)

Từ $(*)$ \(\Rightarrow \left\{\begin{matrix} 2(x_1+x_2)=1-2m\\ 4x_1x_2=2(m-1)\end{matrix}\right.\)

\(\Rightarrow 2(x_1+x_2)+4x_1x_2=1-2m+2(m-1)=-1\)

\(\Rightarrow 2(x_1+x_2)+4x_1x_2+1=0\)

Đây chính là hệ thức liên hệ giữa $x_1,x_2$ độc lập với $m$

4 tháng 6 2017
  1. \(\Delta^'=m^2-\left(m-1\right)\left(m+1\right)=m^2-m^2+1=1>0\)vậy phương trình luôn có hai nghiệm với mọi \(m\ne1\)
  2. Theo viet ta có : \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m+1\end{cases}}\)\(\Rightarrow m+1=5\Rightarrow m=4\Rightarrow x_1+x_2=2m=2.4=8\)
  3. từ hệ thức viet ta khử m được hệ thức liên hệ giữa 2 nghiệm ko phụ thuộc m: thấy \(x_1+x_2-2x_2x_1=2m-2\left(m+1\right)=-2\)
  4. \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=-\frac{5}{2}\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}=-\frac{5}{2}\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=-\frac{5}{2}\)\(\Leftrightarrow\frac{4m^2-2m-2}{m+1}=-\frac{5}{2}\Rightarrow8m^2-4m-4=-5m-5\left(m\ne-1\right)\)\(\Leftrightarrow8m^2+m+1=0\left(vn\right)\)không có giá trị nào của m thỏa mãn
24 tháng 3 2020
https://i.imgur.com/jyxbj19.jpg
17 tháng 8 2016

a) Nếu m = -1 thì : \(4x-3=0\Leftrightarrow x=\frac{3}{4}\) => pt có một nghiệm

Nếu \(m\ne-1\) , xét \(\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-2\right)=m^2-2m+1-\left(m^2-m-2\right)=-m+3\)

Để pt có hai nghiệm phân biệt thì \(\Delta>0\) , tức là \(3-m>0\Leftrightarrow m< 3\)

Vậy để pt có hai nghiệm phân biệt thì \(\begin{cases}m< 3\\m\ne-1\end{cases}\)

b) Thay x = 2 vào pt đã cho  , tìm được m = -6

Suy ra pt : \(-5x^2+14x-8=0\Leftrightarrow\left(5x-4\right)\left(x-2\right)=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=\frac{4}{5}\end{array}\right.\)

Vậy nghiệm còn lại là x = 4/5

17 tháng 8 2016

c) Áp dụng hệ thức Vi-et , ta có : \(\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1.x_2=m-2\end{cases}\)

\(\frac{1}{x_1}+\frac{1}{x_2}=\frac{7}{4}\Leftrightarrow4\left(x_1+x_2\right)=7x_1.x_2\)

\(\Rightarrow4.\left(2m-2\right)=7.\left(m-2\right)\Leftrightarrow8m-8=7m-14\Leftrightarrow m=-6\)

d) Ta có : \(A=2\left(x_1^2+x_2^2\right)+x_1.x_2=2\left(x_1+x_2\right)^2-3x_1.x_2=8\left(m-1\right)^2-3\left(m-2\right)\)

\(=8m^2-19m+14=8\left(m-\frac{19}{16}\right)^2+\frac{87}{32}\ge\frac{87}{32}\)

=> Min A = 87/32 <=> m = 19/16

 

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)a. Tìm m để (1) có 2 nghiệm dương b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyênB2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)a. Tìm m để (1) có 2 nghiệm trái dấub. Tìm m để nghiệm này bằng bình phương nghiệm kiaB3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)a. cmr pt (1) luôn có 2 nghiệm phân...
Đọc tiếp

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)

a. Tìm m để (1) có 2 nghiệm dương 

b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyên

B2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)

a. Tìm m để (1) có 2 nghiệm trái dấu

b. Tìm m để nghiệm này bằng bình phương nghiệm kia

B3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. Tìm m để A=\(x_1^2+x_2^2-3x_1x_2\)đạt GTLN

B4: Cho pt \(x^2+\left(2m+3\right)x+3m+11=0\). Tìm m để pt có 2 nghiệm \(x_1,x_2\ne0\)thỏa mãn \(|\frac{1}{x_1}-\frac{1}{x_2}|=\frac{1}{2}\)

B5: cho 2 đường thẳng \(\left(d_1\right):y=\left(m-1\right)x-m^2-m\)và \(\left(d_2\right):y=\left(m-2\right)x-m^2-2m+1\)

a. Xđ tọa độ giao điểm của \(d_1\)và \(d_2\)(điểm G)

b. cmr điểm G thuộc 1 đường thẳng cố định khi m thay đổi

B6: cho pt \(2x^2-4mx+2m^2-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. tìm m để pt (1) có 2 nghiệm thỏa mãn \(2x_1^2+4mx_2+2m^2-1>0\)

B7: cho pt \(x^2-2mx-16+5m^2=0\)(1)

a. tìm m để (1) có nghiệm

b. gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm GTLN và GTNN của biểu thức A=\(x_1\left(5x_1+3x_2-17\right)+x_2\left(5x_2+3x_1-17\right)\)

0
NV
5 tháng 5 2019

\(\Delta=\left(2m+1\right)^2-4\left(2m-4\right)=\left(2m-1\right)^2+16>0\)

Phương trình luôn có 2 nghiệm pb

Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=2m-4\end{matrix}\right.\) (1)

a/ \(\left|x_1\right|+\left|x_2\right|=5\)

\(\Leftrightarrow x_1^2+x_2^2+2\left|x_1x_2\right|=25\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=25\)

\(\Leftrightarrow\left(2m+1\right)^2-2\left(2m-4\right)+2\left|2m-4\right|=25\)

- Với \(m\ge2\) ta có:

\(\left(2m+1\right)^2=25\Rightarrow\left[{}\begin{matrix}2m+1=5\\2m+1=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=2\\m=-3< 2\left(l\right)\end{matrix}\right.\)

- Với \(m< 2\) ta có:

\(\left(2m+1\right)^2-4\left(2m-4\right)-25=0\)

\(\Leftrightarrow4m^2-4m-8=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=2\left(l\right)\end{matrix}\right.\)

b/ \(x_1< 1< x_2\Leftrightarrow\left\{{}\begin{matrix}x_1-1< 0\\x_2-1>0\end{matrix}\right.\) \(\Rightarrow\left(x_1-1\right)\left(x_2-1\right)< 0\)

\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1< 0\)

\(\Leftrightarrow2m-4-\left(2m+1\right)+1< 0\)

\(\Leftrightarrow-4< 0\) (luôn đúng)

Vậy với mọi m pt luôn có 2 nghiệm t/m \(x_1< 1< x_2\)

c/ Trừ vế cho vế của hệ (1) ta được:

\(x_1+x_2-x_1x_2=5\)

Đây chính là biểu thức liên hệ 2 nghiệm ko phụ thuộc m