Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài I:
Trước tiên, để pt có thể có 2 nghiệm thì $m\neq 0$
PT có 2 nghiệm phân biệt \(\Leftrightarrow \Delta=(m+3)^2-4m(2m+1)>0\)
\(\Leftrightarrow -7m^2+2m+9>0\)
\(\Leftrightarrow -1< m< \frac{9}{7}\)
Áp dụng hệ thức Vi-et: \(\left\{\begin{matrix} x_1+x_2=\frac{m+3}{m}\\ x_1x_2=\frac{2m+1}{m}\end{matrix}\right.\)
Khi đó:
\(|x_1-x_2|=\sqrt{(x_1-x_2)^2}=\sqrt{x_1^2-2x_1x_2+x_2^2}=\sqrt{(x_1^2+2x_1x_2+x_2^2)-4x_1x_2}\)
\(=\sqrt{(x_1+x_2)^2-4x_1x_2}=\sqrt{\frac{(m+3)^2}{m^2}-\frac{4(2m+1)}{m}}\)
\(=\sqrt{\frac{-7m^2+2m+9}{m^2}}\)
Để \(|x_1-x_2|=2\Leftrightarrow \sqrt{\frac{-7m^2+2m+9}{m^2}}=2\)
\(\Rightarrow \frac{-7m^2+2m+9}{m^2}=4\Rightarrow 11m^2-2m-9=0\)
\(\Rightarrow \left[\begin{matrix} m=1\\ m=-\frac{9}{11}\end{matrix}\right.\) (đều thỏa mãn)
Vậy...........
Câu II:
Để pt có 2 nghiệm pb thì:
\(\Delta=(2m-1)^2-8(m-1)>0\)
\(\Leftrightarrow 4m^2-12m+9>0\Leftrightarrow (2m-3)^2>0\Leftrightarrow m\neq \frac{3}{2}\)
Áp dụng hệ thức Vi-et: \(\left\{\begin{matrix} x_1+x_2=\frac{1-2m}{2}\\ x_1x_2=\frac{m-1}{2}\end{matrix}\right.(*)\)
a) Khi đó: \(3x_1-4x_2=11\)
\(\Leftrightarrow 7x_1-4(x_1+x_2)=11\)
\(\Leftrightarrow 7x_1=11+4(x_1+x_2)=11+2(1-2m)=13-4m\)
\(\Leftrightarrow x_1=\frac{13-4m}{7}\)
\(\Rightarrow x_2=\frac{1-2m}{2}-x_1=\frac{-19-6m}{14}\)
Suy ra:
\(\frac{m-1}{2}=x_1x_2=\frac{13-4m}{7}.\frac{-19-6m}{14}\)
\(\Leftrightarrow 49(m-1)=(13-4m)(-19-6m)\)
\(\Leftrightarrow 24m^2-51m-198=0\Rightarrow m=\frac{33}{8}\) hoặc $m=-2$ (đều thỏa mãn)
b)
Từ $(*)$ \(\Rightarrow \left\{\begin{matrix} 2(x_1+x_2)=1-2m\\ 4x_1x_2=2(m-1)\end{matrix}\right.\)
\(\Rightarrow 2(x_1+x_2)+4x_1x_2=1-2m+2(m-1)=-1\)
\(\Rightarrow 2(x_1+x_2)+4x_1x_2+1=0\)
Đây chính là hệ thức liên hệ giữa $x_1,x_2$ độc lập với $m$
- \(\Delta^'=m^2-\left(m-1\right)\left(m+1\right)=m^2-m^2+1=1>0\)vậy phương trình luôn có hai nghiệm với mọi \(m\ne1\)
- Theo viet ta có : \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m+1\end{cases}}\)\(\Rightarrow m+1=5\Rightarrow m=4\Rightarrow x_1+x_2=2m=2.4=8\)
- từ hệ thức viet ta khử m được hệ thức liên hệ giữa 2 nghiệm ko phụ thuộc m: thấy \(x_1+x_2-2x_2x_1=2m-2\left(m+1\right)=-2\)
- \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=-\frac{5}{2}\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}=-\frac{5}{2}\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=-\frac{5}{2}\)\(\Leftrightarrow\frac{4m^2-2m-2}{m+1}=-\frac{5}{2}\Rightarrow8m^2-4m-4=-5m-5\left(m\ne-1\right)\)\(\Leftrightarrow8m^2+m+1=0\left(vn\right)\)không có giá trị nào của m thỏa mãn
a) Nếu m = -1 thì : \(4x-3=0\Leftrightarrow x=\frac{3}{4}\) => pt có một nghiệm
Nếu \(m\ne-1\) , xét \(\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-2\right)=m^2-2m+1-\left(m^2-m-2\right)=-m+3\)
Để pt có hai nghiệm phân biệt thì \(\Delta>0\) , tức là \(3-m>0\Leftrightarrow m< 3\)
Vậy để pt có hai nghiệm phân biệt thì \(\begin{cases}m< 3\\m\ne-1\end{cases}\)
b) Thay x = 2 vào pt đã cho , tìm được m = -6
Suy ra pt : \(-5x^2+14x-8=0\Leftrightarrow\left(5x-4\right)\left(x-2\right)=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=\frac{4}{5}\end{array}\right.\)
Vậy nghiệm còn lại là x = 4/5
c) Áp dụng hệ thức Vi-et , ta có : \(\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1.x_2=m-2\end{cases}\)
\(\frac{1}{x_1}+\frac{1}{x_2}=\frac{7}{4}\Leftrightarrow4\left(x_1+x_2\right)=7x_1.x_2\)
\(\Rightarrow4.\left(2m-2\right)=7.\left(m-2\right)\Leftrightarrow8m-8=7m-14\Leftrightarrow m=-6\)
d) Ta có : \(A=2\left(x_1^2+x_2^2\right)+x_1.x_2=2\left(x_1+x_2\right)^2-3x_1.x_2=8\left(m-1\right)^2-3\left(m-2\right)\)
\(=8m^2-19m+14=8\left(m-\frac{19}{16}\right)^2+\frac{87}{32}\ge\frac{87}{32}\)
=> Min A = 87/32 <=> m = 19/16
\(\Delta=\left(2m+1\right)^2-4\left(2m-4\right)=\left(2m-1\right)^2+16>0\)
Phương trình luôn có 2 nghiệm pb
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=2m-4\end{matrix}\right.\) (1)
a/ \(\left|x_1\right|+\left|x_2\right|=5\)
\(\Leftrightarrow x_1^2+x_2^2+2\left|x_1x_2\right|=25\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=25\)
\(\Leftrightarrow\left(2m+1\right)^2-2\left(2m-4\right)+2\left|2m-4\right|=25\)
- Với \(m\ge2\) ta có:
\(\left(2m+1\right)^2=25\Rightarrow\left[{}\begin{matrix}2m+1=5\\2m+1=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=2\\m=-3< 2\left(l\right)\end{matrix}\right.\)
- Với \(m< 2\) ta có:
\(\left(2m+1\right)^2-4\left(2m-4\right)-25=0\)
\(\Leftrightarrow4m^2-4m-8=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=2\left(l\right)\end{matrix}\right.\)
b/ \(x_1< 1< x_2\Leftrightarrow\left\{{}\begin{matrix}x_1-1< 0\\x_2-1>0\end{matrix}\right.\) \(\Rightarrow\left(x_1-1\right)\left(x_2-1\right)< 0\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1< 0\)
\(\Leftrightarrow2m-4-\left(2m+1\right)+1< 0\)
\(\Leftrightarrow-4< 0\) (luôn đúng)
Vậy với mọi m pt luôn có 2 nghiệm t/m \(x_1< 1< x_2\)
c/ Trừ vế cho vế của hệ (1) ta được:
\(x_1+x_2-x_1x_2=5\)
Đây chính là biểu thức liên hệ 2 nghiệm ko phụ thuộc m
a: \(\text{Δ}=\left(2m-1\right)^2-8\left(m-1\right)\)
\(=4m^2-4m+1-8m+8\)
\(=4m^2-12m+9=\left(2m-3\right)^2>=0\)
=>Pt luôn có hai nghiệm phân biệt
Theo đề, ta có: \(\left\{{}\begin{matrix}3x_1-4x_2=11\\x_1+x_2=\dfrac{-2m+1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_1-4x_2=11\\3x_1+3x_2=\dfrac{-6m+3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-7\cdot x_2=11-\dfrac{-6m+3}{2}=\dfrac{22+6m-3}{2}=\dfrac{6m+19}{2}\\3x_1=11+4x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{-6m-19}{14}\\x_1=\dfrac{1}{3}\left(4\cdot\dfrac{-6m-19}{14}+11\right)=\dfrac{1}{3}\left(\dfrac{-12m-38}{7}+11\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{-6m-19}{14}\\x_1=\dfrac{1}{3}\cdot\dfrac{-12m-38+77}{7}=\dfrac{-4m+13}{7}\end{matrix}\right.\)
Theo đề, ta có: \(\dfrac{-6m-19}{14}\cdot\dfrac{-4m+13}{7}=\dfrac{m-1}{2}\)
\(\Leftrightarrow m=-2\)
b: Để phươg trình có hai nghiệm đều dương thì (-2m+1)/2>0 và (m-1)/2>0
=>-2m+1>0 và m-1>0
=>m<1/2 và m>1
hay \(m\in\varnothing\)