K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2022

a, Thay m=2 vào pt ta có:
(1)\(\Leftrightarrow2x^2+\left(2.2-1\right)x+2-1=0\)

\(\Leftrightarrow2x^2+3x+1=0\\ \Leftrightarrow\left(2x^2+2x\right)+\left(x+1\right)=0\\ \Leftrightarrow2x\left(x+1\right)+\left(x+1\right)=0\\ \Leftrightarrow\left(2x+1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=-1\end{matrix}\right.\)

b,\(\Delta=\left(2m-1\right)^2-4.2\left(m-1\right)=4m^2-4m+1-8\left(m-1\right)=4m^2-4m+1-8m+8=4m^2-12m+9\)

Để pt có 2 nghiệm thì \(\Delta\ge0\Leftrightarrow4m^2-12m+9\ge0\left(luôn.đúng\right)\)

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-2m}{2}\\x_1x_2=\dfrac{m-1}{2}\end{matrix}\right.\)

\(4x^2_1+4x^2_2+2x_1x_2=1\\ \Leftrightarrow4\left(x^2_1+x^2_2\right)+2.\dfrac{m-1}{2}=1\\ \Leftrightarrow4\left(x_1+x_2\right)^2-8x_1x_2+m-1=1\\ \Leftrightarrow4.\left(\dfrac{1-2m}{2}\right)^2-8.\dfrac{m-1}{2}+m-2=0\)

\(4.\dfrac{\left(1-2m\right)^2}{4}-4\left(m-1\right)+m-2=0\\ \Leftrightarrow4\left(1-4m+4m^2\right)-4m+4+m-2=0\\ \Leftrightarrow4-16m+16m^2-3m+2=0\\ \Leftrightarrow16m^2-19m+6=0\)

Ta có:\(\Delta=\left(-19\right)^2-4.16.6=361-384=-23< 0\)

Suy ra pt vô nghiệm

 

Δ=(2m-1)^2-4*2*(m-1)

=4m^2-4m+1-8m+8

=4m^2-12m+9=(2m-3)^2>=0

=>PT luôn có 2 nghiệm

4x1^2+4x2^2+2x1x2=0

=>4[(x1+x2)^2-2x1x2]+m-1=0

=>4[(-2m+1)^2/4-2*(m-1)/2]+m-1=0

=>(2m-1)^2-4(m-1)+m-1=0

=>4m^2-4m+1-3m+3=0

=>4m^2-7m+4=0

=>\(m\in\varnothing\)

3 tháng 5 2021

`Delta=(2m-1)^2-8(m-1)`

`=4m^2-4m+1-8m+8`

`=4m^2-12m+9`

`=(2m-3)^2>=0(AA m)`

Vi-ét:

`x_1+x_2=(1-2m)/2,x_1.x_2=(m-1)/2`

`4x_1+4x_2^2+2x_1x_2=1`

`<=>(2x_1+2x_2)^2-6x_1x_2=1`

`<=>(2m-1)^2-3(m-1)-1=0`

`<=>4m^2-4m+1-3m+3-1=0`

`<=>4m^2-7m+3=0`

`<=>m=1\or\m=3/4`

c) Ta có: \(\text{Δ}=\left[-2\left(m+1\right)\right]^2-4\cdot1\cdot\left(2m+1\right)\)

\(=\left(-2m-2\right)^2-4\left(2m+1\right)\)

\(=4m^2+8m+4-8m-4\)

\(=4m^2\ge0\forall m\)

Do đó, phương trình luôn có nghiệm

Áp dụng hệ thức Vi-et, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+1\right)}{1}=2m+2\\x_1\cdot x_2=2m+1\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1-2x_2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=2m-1\\x_1=2m+2+x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2m-1}{3}\\x_1=2m+3+\dfrac{2m-1}{3}=\dfrac{8m+8}{3}\end{matrix}\right.\)

Ta có: \(x_1\cdot x_2=2m+1\)

\(\Leftrightarrow\dfrac{2m-1}{3}\cdot\dfrac{8m+8}{3}=2m+1\)

\(\Leftrightarrow\left(2m-1\right)\left(8m+8\right)=9\left(2m+1\right)\)

\(\Leftrightarrow16m^2+16m-8m-8-18m-9=0\)

\(\Leftrightarrow16m^2-10m-17=0\)

\(\text{Δ}=\left(-10\right)^2-4\cdot16\cdot\left(-17\right)=1188\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=\dfrac{10-6\sqrt{33}}{32}\\m_2=\dfrac{10+6\sqrt{33}}{32}\end{matrix}\right.\)

2 tháng 4 2021

giúp e câu b nx

 

7 tháng 6 2018

\(x^2+2x+m-1=0\)  (*)     (a=1;b'=1;c=m-1)

a)   Thay m=-2 vào pt   (*) 

           Ta có:\(x^2+2x-3=0\)\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)

=>NO pt là:   S={-3;1}

b)\(\Delta'=b'^2-a.c=1^2-1.\left(m-1\right)\)

\(\Leftrightarrow1-m+1=2-m\)

        *Để pt có 2 N0 phân biêt thì \(\Delta'>0\Leftrightarrow2-m>0\Leftrightarrow m< 2\)

Theo Vi-ét ta có:\(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-2=S\\x_1.x_2=\frac{c}{a}=m-1=P\end{cases}}\)

Theo bài ra ta có:x1=2x2  \(\Leftrightarrow x_1-2x_2=0\)

...

1, 

Thay  m=4 phuong trình đã cho trở thành :  \(x^2-9x+20=0\)

\(\Delta=81-80=1\) \(>0\) nên phương trình đã cho có hai nghiệm phân biệt \(x_1=5\) và \(x_2=4\).

2, 

Ta có \(\Delta=\left(2m+1\right)^2-4\left(m^2+m\right)=1>0\) với mọi \(m\) nên phuong trình đã cho có hai nghiệm phân biệt 

\(x_1,x_2\) với mọi \(m.\)

Áp dụng định lý Vi-et : \(\hept{\begin{cases}x_1+x_2=2m+1\\x_1x_2=m^2+m\end{cases}}\)

\(\Rightarrow x_1^2+x_2^2-5x_1x_2=-17\) \(\Leftrightarrow\left(x_1+x_2\right)^2-7x_1x=-17\Leftrightarrow\left(2m+1\right)^2-7\left(m^2+m\right)=-17\Leftrightarrow m^2+m-6=0\)

\(\Rightarrow\hept{\begin{cases}m=-3\\m=2\end{cases}}\)

8 tháng 4 2021

a, \(x^2-4x+3=0\Leftrightarrow x^2-x-3x+3=0\)

\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

Vậy tập nghiệm của phương trình là S = { 1 ; 3 } 

b, Ta có : \(\Delta=\left(2m+2\right)^2-4\left(2m-5\right)=4m^2+8m+4-8m+20=4m^2+24>0\forall m\)

Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m-2\\x_1x_2=\frac{c}{a}=2m-5\end{cases}}\)

Ta có : \(\left(x_1^2-2mx_1-x_2+2m-3\right)\left(x_2^2-2mx_2-x_1+2m-3\right)=19.1=1.19\)

TH1 : \(\hept{\begin{cases}x_1^2-2mx_1-x_2+2m-3=19\\x_2^2-2mx_2-x_1+2m-3=1\end{cases}}\)

Lấy phương trình (1) + (2) ta được : 

\(x_1^2+x_2^2-2mx_1-2mx_2-x_2-x_1+4m-6=20\)

mà \(\left(x_1+x_2\right)^2=4m^2+8m+4\Rightarrow x_1^2+x_2^2=4m^2+8m+4-2x_1x_2\)

\(=4m^2+8m+4-2\left(2m-5\right)=4m^2+4m-6\)

\(\Leftrightarrow4m^2+4m-6-2m\left(2m-2\right)-\left(2m-2\right)+4m-6=20\)

\(\Leftrightarrow4m^2+4m-6-4m^2+4m-2m+2+4m-6=20\)

\(\Leftrightarrow10m=30\Leftrightarrow m=3\)tương tự với TH2, nhưng em ko chắc lắm vì dạng này em chưa làm bao giờ 

30 tháng 6 2021

x=1 và x=3

a: Khi x=2 thì pt sẽ là 2^2-2(m-1)*2-2m-1=0

=>4-2m-1-4(m-1)=0

=>-2m+3-4m+4=0

=>-6m+7=0
=>m=7/6