Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
Xét \(\Delta'=9-2m-1=8-2m\ge0\Leftrightarrow m\le4\)
b
Theo Viete ta dễ có:\(x_1+x_2=6;x_1x_2=2m-1\)
Ta có:\(A=\left(x_1-1\right)^2\left(x_2-1\right)^2=\left[x_1x_2-\left(x_1+x_2\right)+1\right]^2=\left(2m-1-6+1\right)^2\)
\(=\left(2m-6\right)^2\le\left(2\cdot4-6\right)^2=4\)
Đẳng thức xảy ra tại m=4
Vậy ............................
Áp dụng hệ thức Vi-ét,ta có :
\(\hept{\begin{cases}x_1+x_2=\frac{m-1}{1}=m-1\\x_1x_2=\frac{2m-6}{1}=2m-6\end{cases}}\)
\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{5}{2}\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}=\frac{5}{2}\)
\(\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\frac{5}{2}\)
\(\Leftrightarrow\frac{\left(m-1\right)^2-2\left(2m-6\right)}{2m-6}=\frac{m^2-6m+13}{2m-6}=\frac{5}{2}\)
\(\Leftrightarrow2m^2-12m+26=10m-30\Leftrightarrow2m^2-22m+56=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=4\\m=7\end{cases}}\)
Vây .....
pt \(2x^2-\left(m+3\right)x+m=0\) có \(\Delta=\left(-m-3\right)^2-4.2m=m^2-2m+9=\left(m-1\right)^2+8>0\)
nên pt có 2 nghiệm phân biệt x1, x2 với mọi m
Ta có : \(P=\left|x_1-x_2\right|\)\(\Leftrightarrow\)\(P^2=\left(x_1-x_2\right)^2=x_1^2+x_2^2-2x_1x_2=\left(x_1+x_2\right)^2-4x_1x_2\)
Theo định lý Vi-et ta có : \(\hept{\begin{cases}x_1+x_2=\frac{m+3}{2}\\x_1x_2=\frac{m}{2}\end{cases}}\)
\(\Rightarrow\)\(P^2=\left(\frac{m+3}{2}\right)^2-4.\frac{m}{2}=\frac{m^2-2m+9}{4}=\frac{\left(m-1\right)^2+8}{4}\ge\frac{8}{4}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(m=1\)
...
à quên, \(P^2\ge2\)\(\Leftrightarrow\)\(P\ge\sqrt{2}\) nhé