Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng đl Vi-ét vào pt ta có:
x1+x2=-1.5
x1 . x2= -13
C=x1(x2+1)+x2(x1+1)
= 2x1x2 + x1+x2
= 2.(-13) -1.5
= -26 -1.5
= -27.5
a, Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-\frac{3}{2}\\x_1x_2=\frac{c}{a}=-13\end{cases}}\)
Ta có : \(C=x_1\left(x_2+1\right)+x_2\left(x_1+1\right)=x_1x_2+x_1+x_1x_2+x_2\)
\(=-13-\frac{3}{2}-13=-26-\frac{3}{2}=-\frac{55}{2}\)
Không bik là đơn giản như bạn nói thật không , nhưng mik chx học tới dạng này :v
Theo vi-et ta có:
\(\hept{\begin{cases}x_1+x_2=2017^{2018}\\x_1.x_2=1\end{cases}}\)
Ta lại có:
\(y_1+y_2=x_1^2+1+x_2^2+1=\left(x_1+x_2\right)^2-2x_1.x_2+2=2017^{4036}\)
\(y_1.y_2=\left(x_1^2+1\right)\left(x_2^2+1\right)=x_1^2+x_2^2+1+x_1^2.x_2^2=\left(x_1+x_1\right)^2+\left(x_1.x_2\right)^2-2x_1.x_2+1=2017^{4036}\)
Vậy phương trình mới là:
\(Y^2-2017^{4036}Y+2017^{4036}=0\)
\(x^2-2\left(m+1\right)x+3\left(m+1\right)-3=0\)
\(x^2-2nx+3n+3=\left(x-n\right)^2-\left(n^2-3n+3\right)=0\)\(\left(x-n\right)^2=\left(n-\frac{3}{2}\right)^2+\frac{3}{4}=\frac{\left(2n-3\right)^2+3}{4}>0\forall n\) vậy luôn tồn tại hai nghiệm
\(\orbr{\begin{cases}x_1=\frac{n-\sqrt{\left(2n-3\right)^2+3}}{2}\\x_2=\frac{n+\sqrt{\left(2n-3\right)^2+3}}{2}\end{cases}}\)
a) \(\frac{x_1}{x_2}=\frac{4x_1-x_2}{x_1}\Leftrightarrow\frac{x_1^2-4x_1x_2+x_2^2}{x_1x_2}=0\)
\(x_1x_2=n^2-\frac{\left(2n-3\right)^2+3}{4}=\frac{4n^2-4n^2+12n-9-3}{4}=3n-3\)
với n=1 hay m=0 : Biểu thức cần C/m không tồn tại => xem lại đề
a) tự làm
b) m=-2 (1) <=>2x^2 +6x-5 =0 (2) kq (a) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-\dfrac{6}{2}=-3\\x_1.x_2=-\dfrac{5}{2};=>\left(x_1;x_2\ne0\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}y_1=\dfrac{x_1}{x_2}\\y_2=\dfrac{x_2}{x_1}\end{matrix}\right.\) \(\Leftrightarrow\)\(\left\{{}\begin{matrix}y_1+y_2=\dfrac{x_1^2+x_2^2}{x_1.x_2}=\dfrac{\left(x_1+x_2\right)^2}{x_1.x_2}-2\\y_1.y_2=\dfrac{x_1.x_2}{x_2.x_1}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y_1+y_2=\dfrac{-28}{5}\\y_1.y_2=1\end{matrix}\right.\)
phương trình bậc hai cần tìm
\(5y^2-28y+5=0\)