Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
DK: sin x + cos x ≠ 0 ⇔ tan x ≠ − 1 ⇔ x ≠ − π 4 + k π
Khi đó P T ⇔ sin x sin 2 x + sin 2 x cos x + sin x + cos x sin x + cos x = 3 cos 2 x
⇔ sin x + cos x sin 2 x + 1 sin x + cos x = 3 cos 2 x − sin 2 x ⇔ sin 2 x − 2 sin x cos x + cos 2 x = 3 sin x + cos x cos x − sin x ⇔ sin x + cos x sin x + cos x = 3 sin x + cos x cos x − sin x ⇔ sin x + cos x = 3 cos x − sin x ⇔ 1 + 3 sin x = 3 − 1 cos x ⇔ tan x = 3 − 1 1 + 3 ⇔ x = π 12 + k π
có 2 nghiệm thuộc − π ; π
Đáp án A
Điều kiện x ∈ ℝ
Đặt t = 2 sin x . Phương trình đã cho trở thành t 2 + 2 t = m ( * )
Vì sin x = sin α ⇔ x = α + 2 k π x = π − α + k 2 π nên để phương trình đã cho có tổng các nghiệm trong khoảng 0 ; π bằng π thì phương trình (*) phải có đúng một nghiệm t ∈ 1 ; 2 sin x ∈ 0 ; 1 thì 2 sin x ∈ 1 ; 2
Xét hàm số f t = t 2 + 2 t có bảng biến thiên
Suy ra để phương trình (*) có đúng một nghiệm t ∈ 1 ; 2 thì m ∈ 3 ; 8 .Vậy tổng các giá trị nguyên của m thỏa mãn yêu cầu bài toán là 4 + 5 + 6 + 7 = 22