Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2018x^2-\left(m-2019\right)x-2020=0\)
Ta có \(\Delta=b^2-4ac\)
\(=\left[-\left(m-2019\right)\right]^2-4.2018.\left(-2020\right)\)
\(=\left(m-2019\right)^2+4.2018.2020>0\)( vì \(\left(m-2019\right)^2\ge0\forall x\))
Phương trình có 2 nghiệm \(x_1,x_2\) Áp dụng hệ thức Vi-ét ta có
\(\hept{\begin{cases}x_1+x_2=\frac{m-2019}{2018}\left(1\right)\\x_1.x_2=\frac{-2020}{2018}\left(2\right)\end{cases}}\)
Ta có \(\sqrt{x_1^2+2019}-x_2=\sqrt{x_2^2+2019}-x_2\)
\(\Leftrightarrow\sqrt{x_1^2+2019}-x_2+x_2=\sqrt{x_2^2+2019}\)
\(\Leftrightarrow\sqrt{x_1^2+2019}+0=\sqrt{x_2^2+2019}\)
\(\Leftrightarrow x_1^2+2019=x_2^2+2019\)
\(\Leftrightarrow x_1^2-x_2^2=0\)
\(\Leftrightarrow\left(x_1-x_2\right).\left(x_1+x_2\right)=0\)
\(\Leftrightarrow\left(x_1-x_2\right).\frac{m-2019}{2018}=0\Rightarrow x_1-x_2=0\left(3\right)\)
Thay (3) vào (!) ta có \(\hept{\begin{cases}x_1+x_2=\frac{m-2019}{2018}\\x_1-x_2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x_1=\frac{m-2019}{2018}\\x_1-x_2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_1=\frac{m-2019}{4036}\\x_2=\frac{m-2019}{4036}\end{cases}}\)
\(\Rightarrow x_1.x_2=\frac{-2020}{2018}=\frac{-1010}{1009}\)
\(\Leftrightarrow\frac{m-2019}{4036}.\frac{m-2019}{4036}=\frac{-1010}{1009}\)
\(\Leftrightarrow\frac{\left(m-2019\right)^2}{4036^2}=\frac{-1010}{1009}\)
\(\Leftrightarrow\left(m-2019\right)^2=\frac{4036^2.\left(-1010\right)}{1009}\)
\(\Leftrightarrow\left(m-2019\right)^2=-16305440\left(VL\right)\)
Vậy không có m để thỏa mãn bài toán
Lời giải:
Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta'=1-(m+2)\geq 0\Leftrightarrow m\leq -1$
Áp dụng định lý Viet:
$x_1+x_2=2$
$x_1x_2=m+2$
Khi đó:
\(\text{VT}=\sqrt{[(x_1-2)^2+mx_2][(x_2-2)^2+mx_1]}=\sqrt{[(x_1-x_1-x_2)^2+mx_2][(x_2-x_1-x_2)^2+mx_1]}\)
\(=\sqrt{(x_2^2+mx_2)(x_1^2+mx_1)}=\sqrt{x_1x_2(x_2+m)(x_1+m)}\)
\(=\sqrt{x_1x_2[x_1x_2+m(x_1+x_2)+m^2]}\)
\(=\sqrt{(m+2)[m+2+2m+m^2]}=\sqrt{(m+2)(m^2+3m+2)}\)
\(=\sqrt{(m+2)^2(m+1)}\)
Lại có:
\(\text{VP}=|x_1-x_2|\sqrt{x_1x_2}=\sqrt{(x_1-x_2)^2x_1x_2}=\sqrt{[(x_1+x_2)^2-4x_1x_2]x_1x_2}\)
\(=\sqrt{-4(m+1)(m+2)}\)
YCĐB thỏa mãn khi:
$\sqrt{(m+1)(m+2)^2}=\sqrt{-4(m+1)(m+2)}$
$\Leftrightarrow (m+1)(m+2)^2=-4(m+1)(m+2)$
$\Leftrightarrow m=-1; m=-2$ hoặc $m=-6$ (đều tm)
\(\Delta=\left[-2\left(m+1\right)\right]^2-4\left(m^2+4\right)\)
\(=4m^2+8m+4-4m^2-16\)
\(=8m-12\)
Để pt có 2 nghiệm thì \(\Delta>0\)
\(\Leftrightarrow8m-12>0\Leftrightarrow m>\dfrac{3}{2}\)
Theo hệ thức Vi-ét,ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\left(1\right)\\x_1x_2=m^2+4\end{matrix}\right.\)
\(\left(1\right)\rightarrow x_2=2\left(m+1\right)-x_1\)
\(x_1^2+2\left(m+1\right)x_2=3m^2+16\)
\(\Leftrightarrow x_1^2+2\left(m+1\right)\left[2\left(m+1\right)-x_1\right]=3m^2+16\)
\(\Leftrightarrow x_1^2+4\left(m+1\right)^2-2x_1\left(m+1\right)=3m^2+16\)
\(\Leftrightarrow x_1^2+4m^2+8m+4-2x_1\left(m+1\right)=3m^2+16\)
\(\Leftrightarrow x_1^2+m^2+8m-12-2x_1\left(m+1\right)=0\)
\(\Leftrightarrow x_1^2+m^2+8m-12-x_1\left(x_1+x_2\right)=0\)
\(\Leftrightarrow x_1^2+m^2+8m-12-x_1^2-x_1x_2=0\)
\(\Leftrightarrow m^2+8m-12-m^2-4=0\)
\(\Leftrightarrow m^2+8m-16=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-4+4\sqrt{2}\left(tm\right)\\m=-4-4\sqrt{2}\left(ktm\right)\end{matrix}\right.\)
Vậy \(m=\left\{-4+4\sqrt{2}\right\}\)
a, - Thay m = 6 vào phương trình ta được : \(x^2-5x+6=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy ...
b, - Xét phương trình trên có : \(\Delta=b^2-4ac=25-4m\)
- Để phương trình có 2 nghiệm phân biệt <=> \(m< \dfrac{25}{4}\)
- Theo viet ta có : \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m\end{matrix}\right.\)
- Ta có : \(\left|x_1-x_2\right|=3\)
\(\Leftrightarrow x^2_1+x^2_2-2\left|x_1x_2\right|=\left(x_1+x_2\right)^2-2\left(x_1x_2+\left|x_1x_2\right|\right)=9\)
\(\Leftrightarrow m+\left|m\right|=8\)
\(\Leftrightarrow2m=8\)
\(\Leftrightarrow m=4\)
Vậy ...
b1: tìm đk m t/m: Δ>0 ↔ m∈(\(\dfrac{1-\sqrt{10}}{2}\) ; \(\dfrac{1+\sqrt{10}}{2}\))
b2: ➝x1+x2 =-2m-1 (1)
→ x1.x2=m^2-1 (2)
b3: biến đổi : (x1-x2)^2 = x1-5x2
↔ (x1+x2)^2 -4.x1.x2 -(x1+x2) +6.x2=0
↔4.m^2 +4m +1 - 4.m^2 +4 +2m+1+6. x2=0
↔x2= -m-1
B4: thay x2= -m-1 vào (1) → x1 = -m
Thay x2 = -m-1, x1 = -m vào (2)
→m= -1
B5: thử lại:
Với m= -1 có pt: x^2 -x =0
Có 2 nghiệm x1=1 và x2=0 (thoả mãn)
\(\Delta'=\left(m-1\right)^2+2m=m^2+1>0;\forall m\)
\(\Rightarrow\) Pt luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-2m\end{matrix}\right.\)
Cộng vế với vế: \(x_1x_2+x_1+x_2=-2\) (1)
\(x_1^2+x_1-x_2=5-2m\)
\(\Leftrightarrow x_1^2+x_1-x_2=5+x_1x_2\) (2)
Cộng vế với vế (1) và (2):
\(\Rightarrow x_1^2+2x_1=3\)
\(\Leftrightarrow x_1^2+2x_1-3=0\Rightarrow\left[{}\begin{matrix}x_1=1\Rightarrow x_2=-\dfrac{3}{2}\\x_1=-3\Rightarrow x_2=-\dfrac{1}{2}\end{matrix}\right.\) (thế \(x_1\) vào (1) để tính ra \(x_2\))
Thế vào \(x_1x_2=-2m\Rightarrow m=-\dfrac{x_1x_2}{2}\Rightarrow m=\pm\dfrac{3}{4}\)