Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \({x^2} + x - 6 \le 0\) là một bất phương trình bậc hai một ẩn
Vì \({2^2} + 2 - 6 = 0\) nên \(x = 2\) là nghiệm của bất phương trình trên
b) \(x + 2 > 0\) không là bất phương trình bậc hai một ẩn
c) \( - 6{x^2} - 7x + 5 > 0\) là một bất phương trình bậc hai một ẩn
Vì \( - {6.2^2} - 7.2 + 5 = - 33 < 0\) nên \(x = 2\) không là nghiệm của bất phương trình trên
Với giá trị x = 0 thì vế trái của phương trình tương đương, còn vế phải âm nên phương án A và B đều bị loại. Tương tự, với x = -2 thì vế trái dương, vế phải âm nên phương án D bị loại.
Đáp án: C
a) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = 3,b = 4,c = 21\)
Ta có \({a^2} + {b^2} - c = 9 + 16 - 21 = 4 > 0\). Vậy đây là phương trình đường tròn có tâm là \(I(3;4)\) và có bán kính \(R = \sqrt 4 = 2\)
b) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = 1,b = - 2,c = 2\)
Ta có \({a^2} + {b^2} - c = 1 + 4 - 2 = 3 > 0\). Vậy đây là phương trình đường tròn có tâm là \(I(1; - 2)\) và có bán kính \(R = \sqrt 3 \)
c) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = \frac{3}{2},b = - 1,c = 7\)
Ta có \({a^2} + {b^2} - c = \frac{9}{4} + 1 - 7 = - \frac{{15}}{4} < 0\). Vậy đây không là phương trình đường tròn.
d) Phương trình không có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) nên phương trình đã cho không là phương trình đường tròn.
\(\text{Δ}_1=\left(-3\right)^2-4\cdot1\cdot\left(2m+3\right)\)
\(=9-8m-12\)
\(=-8m-3\)
\(\text{Δ}_2=\left(-4\right)^2-4\cdot1\cdot\left(m-1\right)\)
\(=16-4m+4\)
\(=-4m+20\)
Để (2) là phương trình hệ quả của (1) thì -8m-3=-4m+20
\(\Leftrightarrow-4m=23\)
hay \(m=-\dfrac{23}{4}\)
a) \( - 2x + 2 < 0\) không là bất phương trình bậc hai một ẩn vì bậc của bất phương trình này là bậc 1.
b) \(\frac{1}{2}{y^2} - \sqrt 2 \left( {y + 1} \right) \le 0\) là bất phương trình bậc hai một ẩn vì bậc của bất phương trình này là bậc 2 và có đúng 1 ẩn là y.
c) \({y^2} + {x^2} - 2x \ge 0\) không là bất phương trình bậc hai một ẩn vì có 2 ẩn là x và y.
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Đáp án A: \(x + y > 3\) là bất phương trình bậc nhất hai ẩn x và y có a=1, b=1, c=3
Đáp án B: \({x^2} + {y^2} \le 4\) không là bất phương trình bậc nhất hai ẩn vì có \({x^2},{y^2}\)
Đáp án C: \(\left( {x - y} \right)\left( {3x + y} \right) \ge 1 \Leftrightarrow 3{x^2} - 2xy - {y^2} \ge 1\) không là bất phương trình bậc nhất hai ẩn vì có \({x^2},{y^2}\)
Đáp án D: \({y^3} - 2 \le 0\) không là bất phương trình bậc nhất hai ẩn vì có \({y^3}\).
Chọn A
Ta có 2 x 2 − x = 0 ⇔ x = 0 x = 1 2
Do đó, tập nghiệm của phương trình đã cho là S 0 = 0 ; 1 2
Xét các đáp án:
Đáp án A. Ta có:
2 x − x 1 − x = 0 ⇔ 1 − x ≠ 0 2 x ( 1 − x ) − x = 0 ⇔ x ≠ 1 x = 0 x = 1 2 ⇔ x = 0 x = 1 2
Do đó, tập nghiệm của phương trình là S 1 = 0 ; 1 2 ⊃ S 0
Đáp án B. Ta có: 4 x 3 - x = 0 ⇔ x = 0 x = ± 1 2
Do đó, tập nghiệm của phương trình là S 2 = − 1 2 ; 0 ; 1 2 ⊃ S 0
Đáp án C. Ta có: 2 x 2 - x 2 + x - 5 2 = 0 ⇔ 2 x 2 − x = 0 x − 5 = 0 ⇔ 2 x 2 − x = 0 x = 5 (vô nghiệm)
Do đó, phương trình vô nghiệm nên không phải hệ quả của phương trình đã cho.
Đáp án D. Ta có: 2 x 3 + x 2 - x = 0 ⇔ x = 0 x = 1 2 x = − 1
Do đó, tập nghiệm của phương trình là S 2 = − 1 ; 0 ; 1 2 ⊃ S 0
Đáp án cần chọn là: C