K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2019

Đáp án B

P T ⇔ log 2 2 x 2 - x + 2 m - 4 m 2 + log 2 x 2 + m x - 2 m 2 = 0 ⇔ 2 x 2 - x + 2 m - 4 m 2 = x 2 + m x - 2 m 2 > 0 ⇔ x 2 - ( m - 1 ) x + 2 m - 2 m 2 = 0 ( x - m ) ( x + 2 m ) > 0 ⇔ [ x = 2 m x = 1 - m x - m x + 2 m > 0  

Điều kiện để pt đã cho có 2 nghiệm ⇔ 4 m 2 > 0 x - m x + 2 m > 0 ⇔ m ∈ - 1 ; 1 2 \ 0  

Khi đó x 1 2 + x 2 2 > 1 ⇔ 4 m 2 + 1 - m 2 > 1 ⇔ 5 m 2 - 2 m > 0 ⇔ [ m > 2 5 m < 0  

Do đó S = - 1 ; 0 ∪ 2 5 ; 1 2 ⇒ A = - 1 + 2 + 1 = 2

28 tháng 5 2019

Chọn B.

Phương pháp:

Đưa phương trình về dạng tích, giải phương trình tìm nghiệm và tìm điều kiện để bài toán thỏa.

14 tháng 11 2017

Chọn D

23 tháng 9 2019

Đáp án A

Đặt t = 2 x > 0 ⇒ t 2 − 2 m t + m + 2 = 0  

ĐK PT có 2 nghiệm phân biệt là: Δ ' = m 2 − m − 2 > 0 S = 2 m > 0 P = m + 2 > 0 ⇔ m > 2  

Khi đó: 2 x 1 = t 1 2 x 2 = t 2 ⇒ x 1 = log 2 t 1 ;   x 2 = log 2 t 2  

Để   x 1 ; x 2 > 0 ⇔ t 1 > 1 ;   t 2 > 1 ⇔ t 1 + t 2 > 2 t 1 − 1 t 2 − 1 > 0 ⇔ 2 m > 2 m + 2 − 2 m + 1 > 0 ⇔ 1 < m < 3

Vậy m ∈ 2 ; 3  

9 tháng 7 2019

10 tháng 8 2019

Đặt  − x 2 + x = t ;

f x = − x 2 + x ; f ' x = − 2 x + 1

Chọn A

13 tháng 9 2018

Chọn B

Cách giải: Ta có:

log 2 x 2 + a 2 + log 2 x 2 + a 2 + log 2 x 2 + a 2 + . . . + log . . . 2 ⏝ n   c ă n x 2 + a 2 - 2 n + 1 - 1 log 2 x a + 1 = 0

1 tháng 2 2016

a)\(\Delta'=\left[\frac{-2.\left(m-1\right)}{2}\right]^2-m^2=m^2-2m+1-m^2=-2m+1\)

b)Để PT có hai nghiệm phân biệt thì \(\Delta'=-2m+1>0\Rightarrow m<\frac{1}{2}\)

Để PT có nghiệm kép thì: \(\Delta'=-2m+1=0\Rightarrow m=\frac{1}{2}\)

Để PT vô nghiệm thì: \(\Delta'=-2m+1<0\Rightarrow m>\frac{1}{2}\)

1 tháng 2 2016

\(\Delta'=b'^2-ac\)

p/s b'=b/2

17 tháng 1 2019

Đáp án C

Với f x > 0 , ∀ x ∈ ℝ . Xét biểu thức  f ' x f x = 2 - 2 x *  

Lấy nguyên hàm 2 vế (*), ta được  ∫ d f x f x = ∫ 2 - 2 x d x

⇔ ∫ d f x f x = - x 2 + 2 x + C ⇔ ln f x = - x 2 + 2 x + C  

Mà f(0) =1 suy ra C = lnf(0) = ln1 = 0. Do đó  f x = e - x 2 + 2 x  

Xét hàm số  f x = e - x 2 + 2 x  trên - ∞ ; + ∞ , có  f ' x = - 2 x + 2 = 0 ⇔ x = 1

Tính giá trị f 1 = e ; lim x → - ∞ f x = 0 ; lim x → - ∞ f x = 0  

Suy ra để phương trình f(x) = m có hai nghiệm thực phân biệt  ⇔ 0 < m < e .