K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2018

Đáp án D.

ta có  m 4 − m 2 + 1 = m 2 − 1 2 2 + 3 4 ≥ 3 4 ∀ m

1 5 x 2 − 4 x + 3 = m 4 − m 2 + 1 ⇔ x 2 − 4 x + 3 = − log 4 m 4 − m 2 + 1

Xét hàm số   y = x 2 − 4 x + 3 có bảng biến thiên:

 

Suy ra bảng biến thiên của hàm số y = x 2 − 4 x + 3 :

Phương trình  x 2 − 4 x + 3 = − log 5 m 4 − m 2 + 1    có 4 nghiệm phân biệt

⇔ 0 < − log 5 m 4 − m 2 + 1 < 1 ⇔ − 1 < log 5 m 4 − m 2 + 1 < 0

⇔ 1 5 < m 4 − m 2 + 1 < 1 ⇔ m 4 − m 2 + 1 < 1

( do  m 4 − m 2 + 1 ≥ 3 4 > 1 5 )

⇔ m 4 − m 2 < 0 ⇔ m 2 m 2 − 1 < 0 ⇔ m ≠ 0 m 2 − 1 < 0 ⇔ m ≠ 0 − 1 < m < 1

⇔ m ∈ − 1 ; 0 ∪ 0 ; 1

Vậy S = − 1 ; 0 ∪ 0 ; 1 , tức là S là hợp của hai khoảng với nhau. Vậy D là đáp án đúng.

30 tháng 9 2017

Đáp án D

23 tháng 9 2019

Đáp án A

Đặt t = 2 x > 0 ⇒ t 2 − 2 m t + m + 2 = 0  

ĐK PT có 2 nghiệm phân biệt là: Δ ' = m 2 − m − 2 > 0 S = 2 m > 0 P = m + 2 > 0 ⇔ m > 2  

Khi đó: 2 x 1 = t 1 2 x 2 = t 2 ⇒ x 1 = log 2 t 1 ;   x 2 = log 2 t 2  

Để   x 1 ; x 2 > 0 ⇔ t 1 > 1 ;   t 2 > 1 ⇔ t 1 + t 2 > 2 t 1 − 1 t 2 − 1 > 0 ⇔ 2 m > 2 m + 2 − 2 m + 1 > 0 ⇔ 1 < m < 3

Vậy m ∈ 2 ; 3  

23 tháng 5 2018

Chọn đáp án A

Ta có

Đặt t = 2 x > 0  thì phương trình đã cho trở thành t 2 - 2 m . t + m + 2 = 0 *  

Để phương trình đã cho có hai  nghiệm dương phân biệt khi và chỉ khi phương trình (*) có hai nghiệm t 1 , t 2  lớn hơn 1.

24 tháng 1 2019

Đáp án C.

Đặt t = sin x , t ∈ − 1 ; 1 . Phương trình đã cho trở thành  2 t + 1 t + 2 = m    (*).

Để phương trình đã cho có đúng hai nghiệm thuộc đoạn 0 ; π  thì phương trình (*) phải có đúng một nghiệm thuộc nửa khoảng 0 ; 1 .

Xét hàm số f t = 2 t + 1 t + 2 . Ta có  f ' t = 3 t + 2 2   .

Bảng biến thiên của :

 

Vậy để phương trình (*) có đúng một nghiệm thuộc nửa khoảng 0 ; 1  thì m ∈ 1 2 ; 1 . Vậy C là đáp án đúng

 

28 tháng 4 2019

Đáp án C

13 tháng 1 2017

1 tháng 5 2017

Đáp án C.

10 tháng 2 2017

Đáp án C.

Ta có y ' = 3 x 2 - 12 x + 9 .

Gọi M x 0 ; y 0  là tiếp điểm của tiếp tuyến đi qua A của đồ thị hàm số.

Lúc này tiếp tuyến có phương trình

y = 3 x o 2 - 12 x 0 + 9 x - x 0 + x 0 3 - 6 x 0 2 + 9 x 0 - 1

Tiếp tuyến đi qua A 1 ; m ⇒ m = 3 x 0 2 - 12 x 0 + 9 1 - x 0 + x 0 3 - 6 x 0 2 + 9 x 0 - 1  

⇔ m = - 2 x 0 3 + 9 x 0 2 - 12 x 0 + 8   (*).

Để có đúng một tiếp tuyến của đồ thị hàm số đi qua A thì phương trình (*) có duy nhất một nghiệm.

Xét hàm số f ( x ) = - 2 x 0 3 + 9 x 0 2 - 12 x 0 + 8  có bảng biến thiên

Để phương trình (*) có nghiệm duy nhất thì m > 4 m < 3 ⇔ m ∈ - ∞ ; 3 ∪ 4 ; + ∞ .

Vậy ta chọn C.

27 tháng 8 2019