Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2n+1\right).\left(2n+3\right)}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{\left(2n+1\right)}-\frac{1}{\left(2n+3\right)}\)
= \(1-\frac{1}{\left(2n+3\right)}\)
cách làm này ko biết sai hay đúng nên hãy cẩn thận
a: f(1)=1
=>\(a\cdot1^2+b\cdot1+1=1\)
=>a+b=0
f(-1)=3
=>\(a\cdot\left(-1\right)^2+b\cdot\left(-1\right)+1=3\)
=>a-b=2
mà a+b=0
nên \(a=\dfrac{2+0}{2}=1;b=2-1=1\)
b: a=1 và b=1 nên \(f\left(x\right)=x^2+x+1\)
\(\Leftrightarrow\dfrac{n}{f\left(n\right)}=\dfrac{n}{n^2+n+1}\)
Gọi d=ƯCLN(n^2+n+1;n)
=>\(\left\{{}\begin{matrix}n^2+n+1⋮d\\n⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}n^2+n+1⋮d\\n\left(n+1\right)⋮d\end{matrix}\right.\)
=>\(\left(n^2+n+1\right)-n\left(n+1\right)⋮d\)
=>\(1⋮d\)
=>d=1
=>ƯCLN(n^2+n+1;n)=1
=>\(\dfrac{n}{f\left(n\right)}=\dfrac{n}{n^2+n+1}\) là phân số tối giản
10:
n lẻ nên n=2k-1
=>A=1+3+5+7+...+2k-1
Số số hạng là (2k-1-1):2+1=k-1+1=k(số)
Tổng là:
\(\dfrac{\left(2k-1+1\right)\cdot k}{2}=k^2\) là số chính phương(ĐPCM)
Đặt d là ước nguyên tố của 2n - 1 và 9n + 4
=> 2n - 1 chia hết cho d ; 9n + 4 chia hết cho d
2n - 1 chia hết cho d => 9( 2n - 1 ) chia hết cho d => 18n - 9 chia hết cho d
9n + 4 chia hết cho d => 2( 9n + 4 ) chia hết cho d => 18n + 8 chia hết cho d
=>( 18n + 8 ) - ( 18n - 9 ) chia hết cho d
=>18n + 8 - 18n + 9 chia hết cho d
=> 17 chia hết cho d => d thuộc ước của 17 mà ước của 17 là 1;17
Gọi ƯCLN(2n+1;2n^2-1)=d
Ta có: 2n+1 chia hết cho d; 2n2-1 chia hết cho d
=>n(2n+1) chia hết cho d; 2n^2-1 chia hết cho d
=>2n^2+2 chia hết cho d; 2n^2-1 chia hết cho d
=>2n^2+2-2n^2-1 chia hết cho d
hay 1 chia hết cho d hay d=1
nên ƯCLN(2n+1;2n^2-1)=1
Vậy A là ps tối giản với mọi n