Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(M=\left(\frac{4}{x-4}-\frac{4}{x+4}\right).\frac{x^2+8x+16}{32}\)
\(M=\left(\frac{4\left(x+4\right)-4\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}\right).\frac{\left(x+4\right)^2}{32}\)
\(M=\frac{4x+16-4x+16}{\left(x+4\right)\left(x-4\right)}.\frac{\left(x+4\right)^2}{32}\)
\(M=\frac{32\left(x+4\right)^2}{32\left(x+4\right)\left(x-4\right)}=\frac{x+4}{x-4}\)
b,
Để M = \(\frac{1}{3}\)
\(\Rightarrow x-4=3x+12\)
\(\Rightarrow2x=16\Leftrightarrow x=8\)
\(c,\)\(\frac{x+4}{x-4}=\frac{x-4+8}{x-4}\)
\(\Rightarrow x-4\inƯ\left(8\right)=\left(1;-1;2;-2;4;-4;8;-8\right)\)
\(\Rightarrow x-4\in\left(5;3;6;2;8;0;12;-4\right)\)
Vậy để M thuộc Z thì x phải thỏa mãn các điều kiện trên .
a) \(ĐKXĐ:\hept{\begin{cases}a\ne\pm2\\a\ne1\\a\ne0\end{cases}}\)
\(A=\left(\frac{4a}{2+a}+\frac{8a^2}{4-a^2}\right):\left(\frac{a-3}{a^2-2a}-\frac{2}{a}\right)\)
\(\Leftrightarrow A=\frac{8a-4a^2+8a^2}{\left(2-a\right)\left(2+a\right)}:\frac{a-3-2a+4}{a\left(a-2\right)}\)
\(\Leftrightarrow A=\frac{4a^2+8a}{\left(2-a\right)\left(2+a\right)}:\frac{-a+1}{a\left(a-2\right)}\)
\(\Leftrightarrow A=\frac{4a}{2-a}:\frac{-a+1}{a\left(a-2\right)}\)
\(\Leftrightarrow A=\frac{4a^2\left(a-2\right)}{\left(a-2\right)\left(a-1\right)}\)
\(\Leftrightarrow A=\frac{4a^2}{a-1}\)
b) Để A nhận giá trị nguyên
\(\Leftrightarrow\frac{4a^2}{a-1}\inℤ\)
\(\Leftrightarrow4a^2⋮a-1\)
\(\Leftrightarrow4\left(a^2-1\right)+4⋮a-1\)
\(\Leftrightarrow4\left(a-1\right)\left(a+1\right)+4⋮a-1\)
\(\Leftrightarrow4⋮a-1\)
\(\Leftrightarrow a-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Leftrightarrow a\in\left\{0;2;-1;3;-3;5\right\}\)
Ta sẽ loại các giá trị ở đkxđ
Vậy để \(A\inℤ\Leftrightarrow a\in\left\{2;-1;3;-3;5\right\}\)
\(M=\frac{a^4-16}{a^4-4a^3+8a^2-16a+16}=\frac{\left(a^2-4\right)\left(a^2+4\right)}{a^4-4a^3+4a^2+4a^2-16a+16}=\frac{\left(a-2\right)\left(a+2\right)\left(a^2+4\right)}{a^2\left(a^2-4a+4\right)+4\left(a^2-4a+4\right)}\)
\(=\frac{\left(a-2\right)\left(a+2\right)\left(a^2+4\right)}{\left(a^2+4\right)\left(a-2\right)^2}=\frac{a+2}{a-2}=\frac{a-2+4}{a-2}=1+\frac{4}{a-2}\)
Để \(M\in Z\Leftrightarrow a-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Ta có bảng:
Vậy...