Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ĐKXĐ \(x^2-4\ne0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\ne0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}X\ne2\\X\ne-2\end{cases}}\)
=> \(X\ne\pm2\)
Vậy \(X\ne\pm2\)
b, Rút gọn
A= \(\frac{x^2-4x+4}{x^2-4}\) ĐKXĐ: \(X\ne\pm2\)
<=> A= \(\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}\)
<=> A= \(\frac{x-2}{x+2}\)
Vậy A= \(\frac{x-2}{x+2}\) với \(X\ne\pm2\)
Hết r............
Thông cảm
a, \(ĐKXĐ:x^2-4\ne0\Rightarrow x\ne\pm2\)
b,Đặt \(A=\frac{x^2-4x+4}{x^2-4}\)
\(=\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)
c, \(\left|x\right|=3\Rightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\) (thỏa mãn ĐKXĐ)
Với x = 3 thì \(A=\frac{3-2}{3+2}=\frac{1}{5}\)
Với x = -3 thì \(A=\frac{-3-2}{-3+2}=5\)
d, \(A< 2\Rightarrow\frac{x-2}{x+2}< 2\Rightarrow x-2< 2x+4\Rightarrow-2-4< 2x-x\Rightarrow x>-6\)
Lời giải:
a. ĐKXĐ: $x^2-16\neq 0\Leftrightarrow (x-4)(x+4)\neq 0$
$\Leftrightarrow x\neq \pm 4$
b. $A=\frac{x^2+8x+16}{x^2-16}=\frac{(x+4)^2}{(x-4)(x+4)}=\frac{x+4}{x-4}$
c. $A=3\Leftrightarrow \frac{x+4}{x-4}=3$
$\Rightarrow x+4=3(x-4)$
$\Leftrightarrow -2x+16=0$
$\Leftrightarrow x=8$ (tm)
d.
$A=0\Leftrightarrow \frac{x+4}{x-4}=0\Leftrightarrow x+4=0\Leftrightarrow x=-4$
Mà theo ĐKXĐ thì $x\neq \pm 4$ nên không tồn tại $x$ để $A=0$
a) ĐKXĐ:
\(x^2-1\ne0\Leftrightarrow x\ne\pm1\)
b) \(A=\dfrac{x^2-2x+1}{x^2-1}\)
\(A=\dfrac{x^2-2\cdot x\cdot1+1^2}{x^2-1^2}\)
\(A=\dfrac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\)
\(A=\dfrac{x-1}{x+1}\)
c) Thay x = 3 vào A ta có:
\(A=\dfrac{3-1}{3+1}=\dfrac{2}{4}=\dfrac{1}{2}\)
a) ĐKXĐ:
\(9x^2-y^2\ne0\Leftrightarrow\left(3x\right)^2-y^2\ne0\Leftrightarrow\left(3x-y\right)\left(3x+y\right)\ne0\)
\(\Leftrightarrow3x\ne\pm y\)
b) \(B=\dfrac{6x-2y}{9x^2-y^2}\)
\(B=\dfrac{2\cdot3x-2y}{\left(3x\right)^2-y^2}\)
\(B=\dfrac{2\left(3x-y\right)}{\left(3x+y\right)\left(3x-y\right)}\)
\(B=\dfrac{2}{3x+y}\)
Thay x = 1 và \(y=\dfrac{1}{2}\) và B ta có:
\(B=\dfrac{2}{3\cdot1+\dfrac{1}{2}}=\dfrac{2}{3+\dfrac{1}{2}}=\dfrac{2}{\dfrac{7}{2}}=\dfrac{4}{7}\)
a) ĐKXĐ: \(x\ne-2\)
b) Ta có: \(\dfrac{2x^2-4x+8}{x^3+8}\)
\(=\dfrac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\)
\(=\dfrac{2}{x+2}\)
c) Vì x=2 thỏa mãn ĐKXĐ
nên Thay x=2 vào biểu thức \(\dfrac{2}{x+2}\), ta được:
\(\dfrac{2}{2+2}=\dfrac{2}{4}=\dfrac{1}{2}\)
Vậy: Khi x=2 thì giá trị của biểu thức là \(\dfrac{1}{2}\)
d) Để \(\dfrac{2}{x+2}=2\) thì x+2=1
hay x=-1(nhận)
Vậy: Để \(\dfrac{2}{x+2}=2\) thì x=-1
a: ĐKXĐ: \(x\notin\left\{-1;-2\right\}\)
b: \(M=\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}=\dfrac{x-1}{x+2}\)
Thay x=2002 vào M, ta được:
\(M=\dfrac{2002-1}{2002+1}=\dfrac{2001}{2003}\)
c: Để M=0 thì x-1=0
hay x=1(nhận)
a) \(\text{A}=\dfrac{4x+4}{x^2-1}.\)
Để phân thức A có nghĩa. \(\Leftrightarrow x\ne1;x\ne-1.\)
b) \(\text{A}=\dfrac{4x+4}{x^2-1}=\dfrac{4\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{x-1}.\)
a) x ≠ -5.
b) Ta có P = ( x + 5 ) 2 x + 5 = x + 5
c) Ta có P = 1 Û x = -4 (TMĐK)
d) Ta có P = 0 Û x = -5 (loại). Do vậy x ∈ ∅ .