K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

phân thức xác định khi và chỉ khi x khác 4.

\(B=\frac{x^2-8x+16}{x-4}\)

\(=\frac{\left(x-4\right)^2}{x-4}\)

\(=x-4\)

Để B=1 => x-4 = 1

<=>x=5 (thỏa mãn)

Vậy B=1 khi và chỉ khi x=5.

2 tháng 2 2017

PHÂN thức

AH
Akai Haruma
Giáo viên
30 tháng 10 2023

Lời giải:

a. ĐKXĐ: $x^2-16\neq 0\Leftrightarrow (x-4)(x+4)\neq 0$

$\Leftrightarrow x\neq \pm 4$

b. $A=\frac{x^2+8x+16}{x^2-16}=\frac{(x+4)^2}{(x-4)(x+4)}=\frac{x+4}{x-4}$

c. $A=3\Leftrightarrow \frac{x+4}{x-4}=3$

$\Rightarrow x+4=3(x-4)$

$\Leftrightarrow -2x+16=0$

$\Leftrightarrow x=8$ (tm) 

d. 

$A=0\Leftrightarrow \frac{x+4}{x-4}=0\Leftrightarrow x+4=0\Leftrightarrow x=-4$

Mà theo ĐKXĐ thì $x\neq \pm 4$ nên không tồn tại $x$ để $A=0$

a: \(B=\dfrac{x^2-1-2x+3x+1}{x\left(x-1\right)}=\dfrac{x^2+x}{x\left(x-1\right)}=\dfrac{x+1}{x-1}\)

8 tháng 12 2021

a) B = \(\dfrac{x+1}{x}-\dfrac{2}{x-1}+\dfrac{3x+1}{x\left(x-1\right)}\) (ĐK: \(x\ne0;1\))

\(\dfrac{\left(x+1\right)\left(x-1\right)}{x\left(x-1\right)}-\dfrac{2x}{x\left(x-1\right)}+\dfrac{3x+1}{x\left(x-1\right)}\)

\(\dfrac{x^2-1-2x+3x+1}{x\left(x-1\right)}=\dfrac{x^2+x}{x\left(x-1\right)}=\dfrac{x+1}{x-1}\)

b) \(\left|x\right|=1< =>\left[{}\begin{matrix}x=1\left(L\right)\\x=-1\left(C\right)\end{matrix}\right.\)

Thay x = -1 vào B, ta có:

\(\dfrac{-1+1}{-1-1}=0\)

c) B nguyên <=> \(\dfrac{x+1}{x-1}\) nguyên <=> \(1+\dfrac{2}{x-1}\) nguyên

<=> 2\(⋮x-1\)

<=> x-1 \(\in\left\{-2;-1;1;2\right\}\)

x-1-2-112
x-1023
 CLCC

KL: x \(\in\left\{-1;2;3\right\}\)

 

10 tháng 8 2023

Đk: \(x\ne1;x\ne0\)

a) \(E=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left[\dfrac{x+1}{x}+\dfrac{1}{x-1}+\dfrac{2-x^2}{x\left(x-1\right)}\right]\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{\left(x+1\right)\left(x-1\right)+x+2-x^2}{x\left(x-1\right)}\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}.\dfrac{x\left(x-1\right)}{x+1}\)

\(=\dfrac{x^2}{x-1}\)

b) \(E>1\Leftrightarrow\dfrac{x^2}{x-1}>1\) \(\Leftrightarrow\dfrac{x^2-x+1}{x-1}>0\) \(\Leftrightarrow x-1>0\) 

( do \(x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\) )

\(\Leftrightarrow x>1\)

Vậy để E>1 thì x>1

c) \(E=\dfrac{x^2}{x-1}=\dfrac{x^2-1+1}{x-1}=\dfrac{\left(x-1\right)\left(x+1\right)+1}{x-1}=x+1+\dfrac{1}{x-1}\)

\(E\in Z\Leftrightarrow x+1+\dfrac{1}{x-1}\in Z\) mà \(x\in Z\)

\(\Rightarrow x-1\inƯ\left(1\right)=\left\{-1;1\right\}\)

\(\Leftrightarrow x=0\left(ktm\right);x=2\left(tm\right)\)

Vậy \(x=2\) thì \(E\in Z\).

28 tháng 11 2018

a,\(M=\left(\frac{4}{x-4}-\frac{4}{x+4}\right).\frac{x^2+8x+16}{32}\)

\(M=\left(\frac{4\left(x+4\right)-4\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}\right).\frac{\left(x+4\right)^2}{32}\)

\(M=\frac{4x+16-4x+16}{\left(x+4\right)\left(x-4\right)}.\frac{\left(x+4\right)^2}{32}\)

\(M=\frac{32\left(x+4\right)^2}{32\left(x+4\right)\left(x-4\right)}=\frac{x+4}{x-4}\)

b,

Để M = \(\frac{1}{3}\)

\(\Rightarrow x-4=3x+12\)

\(\Rightarrow2x=16\Leftrightarrow x=8\)

\(c,\)\(\frac{x+4}{x-4}=\frac{x-4+8}{x-4}\)

\(\Rightarrow x-4\inƯ\left(8\right)=\left(1;-1;2;-2;4;-4;8;-8\right)\)

28 tháng 11 2018

\(\Rightarrow x-4\in\left(5;3;6;2;8;0;12;-4\right)\)

Vậy để M thuộc Z thì x phải thỏa mãn các điều kiện trên .

10 tháng 3 2023

Biểu thức đâu vậy bạn?

30 tháng 12 2022

a: ĐKXĐ: x<>-2

b: \(A=\dfrac{\left(x+2\right)^2}{x+2}=x+2\)

c: Khi x=3 thì A=3+2=55

Khi x=-2 thì A ko xác định

d: Để A=2 thì x+2=2

=>x=0