K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2022

\(A=\dfrac{x-1}{x^2-1}=\dfrac{x-1}{\left(x-1\right)\left(x+1\right)}\)

a) ĐKXĐ:

\(\left\{{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)

b) \(A=\dfrac{x-1}{\left(x-1\right)\left(x+1\right)}=\dfrac{1}{x+1}\)

c) Thay \(x=-2\) vào A, ta có:

\(A=\dfrac{1}{-2+1}=-1\)

Vậy khi x = -2 thì A = -1

18 tháng 1 2022

a) ĐKXĐ:   \(x\ne\pm1\)

b) \(\dfrac{x-1}{x^2-1}=\dfrac{x-1}{\left(x-1\right)\left(x+1\right)}=\dfrac{1}{x+1}\)

c) Khi x = - 2 

\(\dfrac{1}{\left(-2\right)+1}=\dfrac{1}{-1}=-1\)

Vậy khi x = - 2 thì biểu thức có giá trị bằng - 1

Bài 1:

a) x2x≠2

Bài 2:

a) x0;x5x≠0;x≠5

b) x210x+25x25x=(x5)2x(x5)=x5xx2−10x+25x2−5x=(x−5)2x(x−5)=x−5x

c) Để phân thức có giá trị nguyên thì x5xx−5x phải có giá trị nguyên.

=> x=5x=−5

Bài 3:

a) (x+12x2+3x21x+32x+2)(4x245)(x+12x−2+3x2−1−x+32x+2)⋅(4x2−45)

=(x+12(x1)+3(x1)(x+1)x+32(x+1))2(2x22)5=(x+12(x−1)+3(x−1)(x+1)−x+32(x+1))⋅2(2x2−2)5

=(x+1)2+6(x1)(x+3)2(x1)(x+1)22(x21)5=(x+1)2+6−(x−1)(x+3)2(x−1)(x+1)⋅2⋅2(x2−1)5

=(x+1)2+6(x2+3xx3)(x1)(x+1)2(x1)(x+1)5=(x+1)2+6−(x2+3x−x−3)(x−1)(x+1)⋅2(x−1)(x+1)5

=[(x+1)2+6(x2+2x3)]25=[(x+1)2+6−(x2+2x−3)]⋅25

=[(x+1)2+6x22x+3]25=[(x+1)2+6−x2−2x+3]⋅25

=[(x+1)2+9x22x]25=[(x+1)2+9−x2−2x]⋅25

=2(x+1)25+18525x245x=2(x+1)25+185−25x2−45x

=2(x2+2x+1)5+18525x245x=2(x2+2x+1)5+185−25x2−45x

=2x2+4x+25+18525x245x=2x2+4x+25+185−25x2−45x

=2x2+4x+2+18525x245x=2x2+4x+2+185−25x2−45x

=2x2+4x+20525x245x=2x2+4x+205−25x2−45x

c) tự làm, đkxđ: x1;x1

19 tháng 12 2019

ê k bn với mk ik

😘 😘 😘 😘

11 tháng 12 2022

giú mới ạ mái em noppj rồikhocroi

28 tháng 12 2022

\(P=\dfrac{3x^2+6x+3}{x+1}\)

\(a,\) Điều kiện xác định: \(x+1\ne0\Leftrightarrow x\ne-1\)

\(b,P=\dfrac{3x^2+6x+3}{x+1}=\dfrac{3\left(x^2+2x+1\right)}{x+1}=\dfrac{3\left(x+1\right)^2}{x+1}=3\left(x+1\right)=3x+3\)

\(c,x=1\Rightarrow P=3.1+3=6\)

a. \(x\ne5\) là ĐKXĐ của biểu thức P

b. P =\(\dfrac{\left(x-5\right)^2}{x-5}\)=\(x-5\)

c. P = -1 <=> x-5 =-1 <=> x=4

21 tháng 12 2018

1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)

Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)

                                                      \(\left(x+2\right)\ne0\Rightarrow x\ne-2\)

                                                      \(\left(x-2\right)\ne0\Rightarrow x\ne2\)

                         Vậy để biểu thức xác định thì : \(x\ne\pm2\)

b) để C=0 thì ....

21 tháng 12 2018

1, c , bn Nguyễn Hữu Triết chưa lm xong 

ta có : \(/x-5/=2\)

\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)

thay x = 7  vào biểu thứcC

\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...

thay x = 3 vào C 

\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)

=> ko tìm đc giá trị C tại x = 3

4 tháng 1 2022

Phân thức \(A=\dfrac{x^2+2x+1}{x^2+1}\) được xác định 

\(\Leftrightarrow x^2+1\ne0\\ \Leftrightarrow x^2\ne-1\)

Mà \(x^2\ne-1\forall x\)

\(\Rightarrow A=\dfrac{x^2+2x+1}{x^2+1}\) được xác định với mọi giá trị của biến x

4 tháng 1 2022

a) Phân thức A được xác định khi: 

x2+1≠0

=>x² khác - 1

=>x khác +-1

Vây ĐKXĐ của A là x≠1 và x≠−1

b)Ta có: A=x²+2x+1/x²+1

=(x+1)²/(x+1)

=(x+1)

Vậy A=x+1

⇔x≠1 và x khác -1

c) Ta có A=2

<=> x+1=2

⇔x=2-1

⇔x=1 KT

⇔x+1-1=0

=>x=2

Vậy khi x= thì A=2

( Bài này mình làm đại sai thì sr)

a) ĐKXĐ: x\(\ne\)0, x\(\ne\)

Ta có: 
 A= 2x-4/ x2- 2x = 2(x-2)/ x(x-2) = 2/x

Vậy...

b) Ta thấy x=26 thỏa mãn ĐKXĐ

Thay x=26 vào bt A ta được
   A= 2/26 = 1/13

Vậy....

c) Với x\(\ne\)0, x\(\ne\)2 ta có A=12 \(\Leftrightarrow\) 2/x =12 \(\Leftrightarrow\) x=1/6

Vậy....

30 tháng 10 2023

a) ĐKXĐ: 

\(x^2-1\ne0\Leftrightarrow x\ne\pm1\)

b) \(A=\dfrac{x^2-2x+1}{x^2-1}\)

\(A=\dfrac{x^2-2\cdot x\cdot1+1^2}{x^2-1^2}\)

\(A=\dfrac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\)

\(A=\dfrac{x-1}{x+1}\)

c) Thay x = 3 vào A ta có:

\(A=\dfrac{3-1}{3+1}=\dfrac{2}{4}=\dfrac{1}{2}\)

30 tháng 10 2023

a) ĐKXĐ: 

\(9x^2-y^2\ne0\Leftrightarrow\left(3x\right)^2-y^2\ne0\Leftrightarrow\left(3x-y\right)\left(3x+y\right)\ne0\)

\(\Leftrightarrow3x\ne\pm y\) 

b) \(B=\dfrac{6x-2y}{9x^2-y^2}\)

\(B=\dfrac{2\cdot3x-2y}{\left(3x\right)^2-y^2}\)

\(B=\dfrac{2\left(3x-y\right)}{\left(3x+y\right)\left(3x-y\right)}\)

\(B=\dfrac{2}{3x+y}\)

Thay x = 1 và \(y=\dfrac{1}{2}\) và B ta có:

\(B=\dfrac{2}{3\cdot1+\dfrac{1}{2}}=\dfrac{2}{3+\dfrac{1}{2}}=\dfrac{2}{\dfrac{7}{2}}=\dfrac{4}{7}\)

26 tháng 12 2019

a) Phân thức xác định khi: \(\Leftrightarrow x-3\ne3\Leftrightarrow x\ne3\)

ĐKXĐ: \(x\ne3\)

b) \(A=\frac{2x^2+6x}{x^2-9}=\frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2x}{x-3}\)

c) Thay x = -4 vào phân thức đã thu gọn, ta có:

 \(A=\frac{2.\left(-4\right)}{\left(-4\right)-3}=\frac{8}{7}\)

Vậy: tại x = -4 là \(\frac{8}{7}\)

28 tháng 12 2019

a) \(x^2-9=\left(x-3\right)\left(x+3\right)\)

Phân thức xác định khi: \(\left(x-3\right)\left(x+3\right)\ne0\)

\(\Leftrightarrow\hept{\begin{cases}x-3=0\\x+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\x=-3\end{cases}}\Leftrightarrow x\ne\pm3\)

ĐKXĐ: \(x\ne\pm3\)

b) \(A=\frac{2x^2+6x}{x^2-9}=\frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2x}{x-3}\)

c) \(A=\frac{2.\left(-4\right)}{\left(-4\right)-3}=\frac{8}{7}\)