Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) n - 5 / n + 1
=> n + 1 - 6 / n + 1
=> 6 / n + 1
=> n + 1 thuộc Ư(6) = {1;2;3;6;-1;-2;-3;-6}
b) A tối giản => bỏ số âm
A cô thể thuộc {1;2;3;6}
Vì 1 - 5 là số âm => bỏ 1
Vì 2 - 5 âm => bỏ 2
Vì 3 - 5 âm => bỏ 5
Vậy để A tối giản => n = 6
a, \(A=\frac{n-4}{n-3}\) là phân số <=> \(n-3\ne0\)
<=> \(n\ne3\)
b, \(A=\frac{n-4}{n-3}\inℤ\Leftrightarrow n-4⋮n-3\)
\(\Rightarrow n-4⋮n-3\)
\(\Rightarrow n-3-1⋮n-3\)
\(n-3⋮n-3\)
\(\Rightarrow1⋮n-3\)
\(\Rightarrow n-3\inƯ\left(1\right)\)
\(\Rightarrow n-3\in\left\{-1;1\right\}\)
\(\Rightarrow n-3\in\left\{2;4\right\}\)
c, \(A=\frac{n-4}{n-3}=\frac{n-3-1}{n-3}=\frac{n-3}{n-3}-\frac{1}{n-3}=1-\frac{1}{n-3}\)
để A đạt giá trị nỏ nhất thì \(\frac{1}{n-3}\) lớn nhất
=> n - 3 là số nguyên dương nhỏ nhất
=> n - 3 = 1
=> n = 4
\(A=\frac{5n-19}{n-4}=\frac{5n-20+1}{n-4}=\frac{5\left(n-4\right)+1}{n-4}=5+\frac{1}{n-4}\)
Vì \(5\inℤ\)\(\Rightarrow\)Để \(A\inℤ\)thì \(\frac{1}{n-4}\inℤ\)
\(\Rightarrow1⋮n-4\)\(\Rightarrow n-4\inƯ\left(1\right)=\left\{-1;1\right\}\)
\(\Rightarrow n\in\left\{3;5\right\}\)
Vậy \(n\in\left\{3;5\right\}\)
a) Để A là phân số thì \(n+4\ne0\)
hay \(n\ne-4\)
b) Để A là số nguyên thì \(n-1⋮n+4\)
\(\Leftrightarrow-5⋮n+4\)
\(\Leftrightarrow n+4\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{-3;-5;1;-9\right\}\)
Bài làm
a) Để A là phân số tồn tại thì: n + 2 khác 0
=> n khác -2
Vậy để A là phân số tồn tại thì n thuộc Z = { -2 }
b) Ta có: n = -2 thì
A = -7/-2 + 2 = -7/0 ( vô lí vì theo đk thoả mãn )
Ta có: n = -4 thì
A = -7/-4+2 = -7/-2 = 7/2
Ta có: n = 12 thì
A = -7/12+2 = -7/14 = -1/2
Vậy khi n = -2 thì A không tồn tại
n = -4 thì A = 7/2
n = 12 thì A = -1/2
c) Để A là số nguyên
<=> -7 phải chia hết cho n + 2
<=> n + 2 thuộc Ư(-7) = { 1;-1;7;-7 }
Ta có: Khi n + 2 = 1 => n = -1
Khi n + 2 = -1 => n = -3
Khi n + 2 = 7 => n = 5
Khi n + 2 = -7 => n = -9
Vậy để A là số nguyên thì n = { -1;-3;5;-9}
a) P = \(\frac{12n-6}{4n+1}=\frac{12n+3}{4n+1}-\frac{9}{4n+3}=3-\frac{9}{4n+3}\) nguyên
<=> 4n + 3 \(\in\) Ư(9) = {-9; -3; -1; 1; 3; 9}
<=> 4n \(\in\) {-12; -6; -4; -2; 0; 6}
Vì n \(\in\) Z nên n \(\in\) {-3; -1; 0}
b) P rút gọn được <=> ƯCLN(12n - 6; 4n + 1) > 1
Mà 12n - 6 chẵn, 4n + 1 lẻ nên không thể có ước chung là số chẵn
Có 150 < n < 160 nên còn lại các trường hợp n \(\in\) {151; 153; 155; 157; 159}
Đến đây thử các trường hợp n, n nào mà khiến 12n - 6 và 4n + 1 có ước chung > 1 và không phải là số chẵn thì sẽ tìm được n
a) Để A là phân số
\(\Rightarrow n-1\ne0\)
\(\Rightarrow n\ne1\)
=> A là phân số khi \(n\ne1\)
b) Vì \(n\inℤ\)
\(\hept{\begin{cases}3n+4\inℤ\\n-1\inℤ\end{cases}}\)
mà \(A\inℤ\Leftrightarrow3n+4⋮n-1\)
\(\Rightarrow3n-3+7⋮n-1\)
\(\Rightarrow3\left(n-1\right)+7⋮n-1\)
Vì \(3\left(n-1\right)⋮n-1\)
nên \(7⋮n-1\)
\(\Rightarrow n-1\inƯ\left(7\right)\)
\(\Rightarrow n-1\in\left\{\pm1;\pm7\right\}\)
Lập bảng xét 4 trường hợp ta có :
\(n-1\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(n\) | \(2\) | \(0\) | \(8\) | \(-6\) |
Vậy \(n\in\left\{2;0;8;-6\right\}\)
\(P=\frac{12.n-6}{4.n+1}=\frac{12.n+3-9}{4.n+1}=\frac{3.\left(4.n+1\right)-9}{4.n+1}=\frac{3.\left(4.n+1\right)}{4.n+1}-\frac{9}{4.n+1}=3-\frac{9}{4.n+1}\)
Để P là số nguyên thì \(\frac{9}{4.n+1}\) là số nguyên
=> 9 chia hết cho 4.n + 1
=> \(4.n+1\inƯ\left(9\right)\)
Mà 4.n + 1 chia 4 dư 1 => \(4.n+1\in\left\{-3;1;9\right\}\)
=> \(4.n\in\left\{-4;0;8\right\}\)
=> \(n\in\left\{-1;0;2\right\}\)
Vậy \(n\in\left\{-1;0;2\right\}\) thỏa mãn đề bài
P thuộc Z
<=> 12n - 6 chia hết cho 4n + 1
<=> 3(4n + 1) - 9 chia hết cho 4n + 1
<=> 9 chia hết cho 4n + 1
<=> 4n + 1 thuộc Ư(9) = {-9 ; -3 ; -1 ; 1 ; 3 ; 9}
<=> 4n thuộc {-10 ; -4 ; -2 ; 0 ; 2 ; 8}
<=> n thuộc {-5/2 ; -1 ; -1/2 ; 0 ; 1/2 ; 2}