Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu cộng tử số với 8, trừ mẫu số cho 3 thì ta được phân số mới là: \(\frac{a+8}{b-3}\)
Theo đề bài \(\frac{a+8}{b-3}=1\)
\(\Leftrightarrow a+8=b-3\)
\(\Leftrightarrow a-b=-3-8\)
\(\Leftrightarrow a-b=-11\)
Câu 1 : Tìm tất cả các phân số bằng phân số \(\frac{-32}{48}\) và có mẫu là số tự nhiên nhỏ hơn 15
Lời giải:
Theo bài ra ta có:
$\frac{a+b}{b+b}=4\times \frac{a}{b}$
$\frac{a+b}{2\times b}=\frac{4\times a}{b}$
$\frac{a+b}{2\times b}\times 2=\frac{8\times a}{b}$
$\frac{a+b}{b}=\frac{8\times a}{b}$
$\frac{a}{b}+1=8\times \frac{a}{b}$
$1=8\times \frac{a}{b}-\frac{a}{b}=7\times \frac{a}{b}$
$\frac{a}{b}=1:7=\frac{1}{7}$
Vậy phân số cần tìm là $\frac{1}{7}$
Cho phân số tối giản a/b , biết cộng vào cả tử và mẫu với cùng mẫu của phân số đã cho sẽ thu được phấn số mới có giá trị bằng 4 lần giá trị phân số ban đầu.
Nên ta có phuơng trình :
\(\frac{a+b}{b+b}=4\cdot\frac{a}{b}\)
\(\frac{a+b}{2b}=\frac{4a}{b}\)
\(\frac{a+b}{2b}=\frac{4a\cdot2}{b\cdot2}\)
\(\frac{a+b}{2b}=\frac{8a}{2b}\)
Mà\(\frac{a+7a}{2b}=\frac{8a}{2b}\)
Nên \(b=7a.\)
\(a=\frac{1}{7}b.\)
\(\frac{a}{b}=\frac{1}{7}=\frac{2}{14}.........\)
Mà \(\frac{1}{7}\)là phân số tối giản .
Nên phân số thỏa mãn là \(\frac{a}{b}=\frac{1}{7}\)