Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a-x}{b-y}=\frac{a}{b}\)\(=\frac{a-x-a}{b-y-b}=\frac{-x}{-y}=\frac{x}{y}\)
=> \(\frac{a}{b}=\frac{x}{y}\)( điều phải chứng minh)
Vì \(\frac{a-x}{b-y}=\frac{a}{b}\) nên \(\left(a-x\right).b=\left(b-y\right).a\) ; \(ab-xb=ba-ya\)
Do đó : \(xb=ya\) hay \(\frac{x}{y}=\frac{a}{b}\)(đpcm)
Vậy ___________________________
Vì \(\frac{a-x}{b-y}=\frac{a}{b}\) nên (a - x) . b = (b - y) . a
\(\Leftrightarrow\) ab - xb = ba - ya
Do ab = ba \(\Rightarrow\) xb = ya hay \(\frac{x}{y}=\frac{a}{b}\)
1
a,Ta có: \(\frac{a^2+b^2}{a^2+c^2}=\frac{bc+b^2}{bc+c^2}=\frac{b\left(c+b\right)}{c\left(c+b\right)}=\frac{b}{c}\)
b, \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+a\right)+\left(c-a\right)}=\frac{2a}{2c}=\frac{a}{c}\)(1)
Mặt khác: \(\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+a\right)-\left(c-a\right)}=\frac{2b}{2a}=\frac{b}{a}\)(2)
Từ (1);(2)\(\Rightarrow\frac{a}{c}=\frac{b}{a}\Leftrightarrow a^2=bc\)
c, Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{a}{b}=\frac{c}{d}=\frac{m}{n}=\frac{a+c+m}{b+d+n}\)
Ta có : \(a^2=bc\)
\(\Rightarrow\frac{a^2+b^2}{a^2+c^2}=\frac{bc+b^2}{bc+c^2}=\frac{b\left(b+c\right)}{c\left(b+c\right)}=\frac{b}{c}\)(đpcm)
\(\frac{a-x}{b-y}=\frac{a}{b}\)
\(\Rightarrow\left(a-x\right)\cdot b=\left(b-y\right)\cdot a\)
\(\Rightarrow ab-xb=ba-ay\)
\(\Rightarrow xb=ay\)
\(\Rightarrow\frac{x}{y}=\frac{a}{b}\left(đpcm\right)\)
a) Ta có: \(\frac{a}{b}+\frac{a}{c}=\frac{ac+ab}{bc}=\frac{a\left(b+c\right)}{bc}=\frac{a.a}{bc}\) (thay b+c = a) (1)
\(\frac{a}{b}\times\frac{a}{c}=\frac{a.a}{bc}\) (2)
Từ (1) và (2) suy ra: \(\frac{a}{b}+\frac{a}{c}=\frac{a}{b}\times\frac{a}{c}\) (đpcm)
b) \(c=a+b\)\(\Rightarrow\)\(a=c-b\)
Ta có: \(\frac{a}{b}-\frac{a}{c}=\frac{ac-ab}{bc}=\frac{a\left(c-b\right)}{bc}=\frac{a^2}{bc}\) (thay c-b = a) (3)
\(\frac{a}{b}\times\frac{a}{c}=\frac{a^2}{bc}\) (4)
Từ (3) và (4) suy ra: \(\frac{a}{b}-\frac{a}{c}=\frac{a}{b}\times\frac{a}{c}\) (đpcm)
ta co :\(\frac{a-x}{b-y}=\frac{a}{b}\Rightarrow b\left(a-x\right)=a\left(b-y\right)\)
\(\Rightarrow ba-bx=ab-ay\)
\(\Rightarrow ba+ay=bx+ab\)
\(\Rightarrow ay=bx\)
\(\Rightarrow\frac{x}{y}=\frac{a}{b}\)
Minh chac chan 100% tick cho minh nha
Theo t/c dãy tỉ số bằng nhau ta có
\(\frac{a}{b}=\frac{a-x}{b-y}=\frac{a-\left(a-x\right)}{b-\left(b-y\right)}=\frac{x}{y}\)