\(\frac{a}{b}\) ( a, b \(\in\) Z, a > 0, b = 0...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2019

Đề sai rồi bạn ơi, nếu b = 0 thì phân số a/b đâu có nghĩa.

sửa lại b>0

Ta có    ta có a/b + b/a \(\ge\) 2 (a^2 + b^2 )/ab \(\ge\) 2 a^2 + b^2 \(\ge\) 2ab =>a^2 -2ab + b^2 \(\ge\) 0 =>(a - b)^2 >= 0 luôn đúng suy ra điều phải chứng minh dấu '" = "' xảy ra khi và chỉ khi a = b

3 tháng 4 2017

Quy đồng mẫu số ở vế trái:\(\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}\)

Ta cần chứng minh : \(\frac{a^2+b^2}{ab}\)\(\ge\)\(\Leftrightarrow\)\(a^2+b^2\ge2ab\)

Chứng minh bất đẳng thức Cosi(lớp 8) : Ta luôn có : \(\left(a-b\right)^2\ge0\)

\(\Rightarrow\)\(a^2-2ab+b^2\ge0\)\(\Rightarrow a^2+b^2\ge0+2ab=2ab\)(1)

Từ (1) suy ra bài toán luôn đúng với mọi a,b hay \(\frac{a^2+b^2}{ab}\ge2\)hay \(\frac{a}{b}+\frac{b}{a}\ge2\)

\(\Rightarrow\)đpcm.

23 tháng 5 2018

Ta có : \(\frac{a}{b}+\frac{b}{a}-2\)

\(=\frac{a^2}{ab}+\frac{b^2}{ab}-\frac{2ab}{ab}\)

\(=\frac{a^2-2ab+b^2}{ab}\)

\(=\frac{\left(a-b\right)^2}{ab}\ge0\) ( do a;b > 0 )

Dấu "=" xảy ra khi :

\(a-b=0\Leftrightarrow a=b\)

Vậy ...

23 tháng 5 2018

Áp dụng bđt AM-GM: \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{ab}{ab}}=2\)

Dấu "=" xảy ra khi: a=b 

11 tháng 3 2019

Ta có: \(\left(a-b\right)^2\ge0\) (đúng) 

\(\Rightarrow a^2-2ab+b^2\ge0\Rightarrow a^2+b^2\ge2ab\)

Ta có: \(\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}\ge\frac{2ab}{ab}=2\)

"=" khi a=b. Nhưng a<b nên dấu bằng ko xảy ra,vậy ta có đpcm

12 tháng 3 2019

                         Giải

Không giảm tính tổng quát, giả sử \(a\ge b\) suy ra a = b + m \(\left(m\ge0\right)\)

Ta có: \(\frac{a}{b}+\frac{b}{a}=\frac{b+m}{b}+\frac{b}{b+m}\)

           \(=1+\frac{m}{b}+\frac{b}{b+m}\ge1+\frac{m}{b+m}+\frac{b}{b+m}=1+\frac{m+b}{b+m}\)

           \(=1+1=2\)

Vậy \(\frac{a}{b}+\frac{a}{b}\ge2\) (dấu = \(\Leftrightarrow\) m = 0\(\Leftrightarrow\) a = b)

14 tháng 3 2017

Cách 1: Nếu bạn đã học các hằng đẳng thức đáng nhớ.

\(\frac{a}{b}+\frac{b}{a}\)\(=\frac{a^2+b^2}{ab}\)

\(\Rightarrow\frac{a^2+b^2}{ab}-2\)\(=\frac{a^2-2ab+b^2}{ab}=\frac{\left(a-b\right)^2}{ab}\)

Vì a,b > 0 nên \(\frac{\left(a-b\right)^2}{ab}>0\)

hay \(\Rightarrow\frac{a^2+b^2}{ab}-2\)\(>0\)

=>\(\frac{a^2+b^2}{ab}>2\)

=>\(\frac{a}{b}+\frac{b}{a}>2\)

Cách 2: nếu bạn đã học bất đẳng thức cô-si:

\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}\ge2\sqrt{1}>2\)(theo bất đẳng thức cô-si)

25 tháng 9 2015

Không giảm tính tổng quát, giả sử a > b => a = b + m (m > 0)

Ta có \(\frac{a}{b}+\frac{b}{a}=\frac{b+m}{b}+\frac{b}{b+m}\)

                       \(=1+\frac{m}{b}+\frac{b}{b+m}\ge1+\frac{m}{b+m}+\frac{b}{b+m}=1+\frac{m+b}{b+m}=1+1=2\)

Vậy \(\frac{a}{b}+\frac{b}{a}\ge2\) (dấu = xảy ra khi m = 0 <=> a = b)

25 tháng 9 2015

ta có (a-b)2\(\ge\)0

a2+b2\(\ge\)2ab (1)

ta có \(\frac{a}{b} +\frac{b}{a}=\frac{a^2+b^2}{ab}\)

kết hợp với (1) ta có \(\frac{a}{b} +\frac{b}{a}=\frac{a^2+b^2}{ab}\) \(\ge\frac{2ab}{ab}=2\)

vậy \(\frac{a}{b}+\frac{b}{a}\ge2\)

25 tháng 2 2018

a. Ta có

\(B=\frac{2011+2012}{2012+2013}=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}.\)

\(\frac{2011}{2012+2013}< \frac{2011}{2012}.\)(1)

\(\frac{2012}{2012+2013}< \frac{2012}{2013}.\)(2)

Cộng vế với vế của 1;2 ta được

\(B=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}< A=\frac{2011}{2012}+\frac{2012}{2013}\)

hay A>B

Làm ơn giúp mk, mk đang cần gấp!!!

22 tháng 6 2020

Bài làm:

a) Vì \(\frac{13}{15}< 1\)\(\Rightarrow\frac{13}{15}< \frac{13+11}{15+11}=\frac{24}{26}\)

b) Vì \(\frac{13}{15}< 1\)\(\Rightarrow\frac{13}{15}< \frac{13+10}{15+10}=\frac{23}{25}\)

c) Vì \(\frac{3}{5}< 1\)\(\Rightarrow\frac{3}{5}< \frac{3+30}{5+30}=\frac{33}{35}\)

Học tốt!!!!

22 tháng 6 2020

1 lớp học có 2 học sinh một bạn bị chết hỏi còn bao nhiêu bạn

26 tháng 2 2017

a ) Nếu \(\frac{a}{b}>\frac{a+m}{b+m}\)

\(\Leftrightarrow a\left(b+m\right)>b\left(a+m\right)\)

\(\Leftrightarrow ab+am>ab+bm\)

\(\Leftrightarrow am>bm\)

\(\Rightarrow a>b\)

\(\Rightarrow\frac{a}{b}>1\)

Vậy \(\frac{a}{b}>1\) thì \(\frac{a}{b}>\frac{a+m}{b+m}\)

b ) Vì 237 > 142 => \(\frac{237}{142}>\frac{237+9}{142+9}=\frac{246}{151}\)

26 tháng 2 2017

Xét hiệu :

\(\frac{a}{b}-\frac{a+m}{b+m}\)

\(=\frac{a\left(b+m\right)}{b\left(b+m\right)}-\frac{\left(a+m\right)b}{\left(b+m\right)b}\)

\(=\frac{a.b+a.m}{b\left(b+m\right)}-\frac{a.b+b.m}{b\left(b+m\right)}\)

\(=\frac{a.b+a.m-a.b+b.m}{b\left(b+m\right)}\)

\(=\frac{m\left(a-b\right)}{b\left(b+m\right)}\)

Vì \(\frac{a}{b}>1,b\in\)N* \(\Rightarrow a>b\Rightarrow a-b>0,m\in\)N*

\(\Rightarrow m\left(a-b\right)>0\); Vì : \(b,m\in\)N* \(\Rightarrow b\left(b+m\right)>0\)

\(\Rightarrow\frac{m\left(a-b\right)}{b\left(b+m\right)}>0\) hay : \(\frac{a}{b}-\frac{a+m}{b+m}>0\Rightarrow\frac{a}{b}>\frac{a+m}{b+m}\)

Vậy \(\frac{a}{b}>1,m\in\)N* thì \(\frac{a}{b}>\frac{a+m}{b+m}\)

b, Tự làm 

21 tháng 7 2016

a) Vì a > b

=> a.n > b.n

=> a.n + a.b > b.n + a.b

=> a.(b + n) > b.(a + n)

=> a/b > a+n/b+n ( đpcm)

Câu b và c lm tương tự