K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2015

a) Điều kiện \(n+2\ne0\Leftrightarrow n\ne-2\)

b) \(E=\frac{3n+7}{n+2}=\frac{3n+6+1}{n=2}=\frac{3\left(n+2\right)}{n+2}+\frac{1}{n+2}=3+\frac{1}{n+2}\)

Để E thuộc Z thì 1 phải chia hết cho n+2 hay n+2 là ước của 1

Ư(1) = {-1; 1}

+) n+2 = -1 => n = -3

+) n+2 = 1 => n = -1

Vậy n E {-3; -1} thì E thuộc Z

11 tháng 8 2015

a, n > 4

b, Để A nguyên

=> 2 chia hết cho n-2

=> n-2 thuộc Ư(2)

n-2n
13
-11
24
-20  

KL: n thuộc.....................

20 tháng 3 2019

a) Để B là phân số thì 2n + 1 \(\ne\) 0

\(\Leftrightarrow2n\ne0-1\)

\(\Leftrightarrow2n\ne-1\)

\(\Leftrightarrow n\ne\frac{-1}{2}\)

Vậy với mọi n \(\in\) Z  thì B là phân số.

b) Để B \(\in\) Z thì \(\left(3n+2\right)⋮\left(2n+1\right)\)

\(\Leftrightarrow\left[2\left(3n+2\right)\right]⋮\left(2n+1\right)\)

\(\Leftrightarrow\left[6n+4\right]⋮\left(2n+1\right)\)

\(\Leftrightarrow\left[6n+3+1\right]⋮\left(2n+1\right)\)

\(\Leftrightarrow\left[3\left(2n+1\right)+1\right]⋮\left(2n+1\right)\)

Vì \(\left[3\left(2n+1\right)\right]⋮\left(2n+1\right)\) nên \(1⋮\left(2n+1\right)\)

\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{-1;1\right\}\)

Lập bảng:

\(2n+1\)\(-1\)\(1\)
\(n\)\(-1\)\(0\)

Vậy \(n\in\left\{-1;0\right\}\) thì B là số nguyên.

29 tháng 8 2019

Bài 1 :

\(-8=\frac{-8}{1}=\frac{-16}{2}=\frac{-24}{3}=\frac{-32}{4}=\frac{-40}{5}\)

\(-2=\frac{-2}{1}=\frac{-4}{2}=\frac{-6}{3}=\frac{-8}{4}=\frac{-10}{5}\)

\(3=\frac{3}{1}=\frac{6}{2}=\frac{9}{3}=\frac{12}{4}=\frac{15}{5}\)

  

29 tháng 8 2019

Bài 2 :

 a)  Để A là phân số thì :

  \(n-6\ne0\Rightarrow n\ne6\)

b)\(A=\frac{4}{0-6}=\frac{4}{-6}\)

\(A=\frac{4}{7-6}=4\)

\(A=\frac{4}{-12-6}=\frac{-2}{9}\)

Bài 3 : [ Tương tự bài 2 ]

Bài 4 : [ Suy nghĩ thì ra ]

               [ Hoq chắc - có gì sai thông cảm ]

13 tháng 3 2022

\(M=\frac{n+4}{n+1}\)

a)\(ĐK:n\ne-1\)

b)\(n=0\)

Thay n=0 vào M ta được:

\(M=\frac{0+4}{0+1}=4\)

   \(n=3\)

Thay n=3 vào M ta được:

\(M=\frac{3+4}{3+1}=\frac{7}{4}\)

   \(n=-7\)

Thay n=-7 vào M ta được:

\(M=\frac{-7+4}{-7+1}=\frac{-3}{-6}=\frac{1}{2}\)

c)\(M=\frac{n+4}{n+1}=\frac{\left(n+1\right)+3}{n+1}=1+\frac{3}{n+1}\)

Để M nguyên thì \(1+\frac{3}{n+1}\)nguyên 

Mà \(1\in Z\)nên để \(1+\frac{3}{n+1}\)nguyên thì \(\frac{3}{n+1}\)nguyên

Để \(\frac{3}{n+1}\)nguyên thì \(3⋮n+1\)

\(\Leftrightarrow n+1\inƯ\left(3\right)\)

\(\Leftrightarrow n+1\in\left\{-3;-1;1;3\right\}\)

\(\Leftrightarrow n\in\left\{-4;-2;0;2\right\}\)(Đều thỏa mãn ĐK)

Vậy....

13 tháng 3 2022

a, đk x khác -1 

b, Với n = 0 => 0+4/0+1 = 4 

Với n = 3 => \(\dfrac{3+4}{3+1}=\dfrac{7}{4}\)

Với n = -7 => \(\dfrac{-7+4}{-7+1}=-\dfrac{3}{-6}=\dfrac{1}{2}\)

c, \(\dfrac{n+4}{n+1}=\dfrac{n+1+3}{n+1}=1+\dfrac{3}{n+1}\Rightarrow n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

n+11-13-3
n0-22-4

 

26 tháng 2 2016

a, Để C là phân số thì n thuộc Z và n + 1 ≠ 0 => -1 ≠ 0 

b, Để C là số nguyên thì n + 3 ⋮ n + 1.

Ta có n + 3 = n + 1 + 2. Để n + 3 ⋮ n + 1 thì n+1 ⋮ n + 1 và 2 ⋮ n+1 => n+1 ∈ Ư(2)

Mà Ư(2) = {1 ; -1 ; 2 ; -2}

Ta có bảng  

n+11-12-2
n0-21-3

Vậy n ∈ {0 ; -2 ; 1 ; -3}