\(\dfrac{a}{b}\) sau khi rút gọn được phân số \(\dfrac{c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2017

Theo đề bài ta có \(\dfrac{a}{b}=\dfrac{c}{d}\)

=> \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\) ( tính chất dãy tỉ số = nhau )

=> \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a-c}{b-d}\) ( tính chất dãy tỉ số = nhau )

20 tháng 7 2017

Bạn giải thích rõ chỗ suy ra đc không

21 tháng 7 2017

Bài 2 : đề bài này chỉ cần a,b>0 , ko cần phải thuộc N* đâu

a, Áp dụng bất đẳng thức AM-GM cho 2 số lhoong âm a,b ta được :

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ba}}=2\) . Dấu "=" xảy ra khi a=b

b , Áp dụng BĐT AM-GM cho 2 số không âm ta được : \(a+b\ge2\sqrt{ab}\)

\(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{ab}}=\dfrac{2}{\sqrt{ab}}\)

Nhân vế với vế ta được :

\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2.2.\dfrac{\sqrt{ab}}{\sqrt{ab}}=4\left(đpcm\right)\)

Dấu "="xảy ra tại a=b

21 tháng 7 2017

Bài 1.

Vì a, b, c, d \(\in\) N*, ta có:

\(\dfrac{a}{a+b+c+d}< \dfrac{a}{a+b+c}< \dfrac{a}{a+b}\)

\(\dfrac{b}{a+b+c+d}< \dfrac{b}{a+b+d}< \dfrac{b}{a+b}\)

\(\dfrac{c}{a+b+c+d}< \dfrac{c}{b+c+d}< \dfrac{c}{c+d}\)

\(\dfrac{d}{a+b+c+d}< \dfrac{d}{a+c+d}< \dfrac{d}{c+d}\)

Do đó \(\dfrac{a}{a+b+c+d}+\dfrac{b}{a+b+c+d}+\dfrac{c}{a+b+c+d}+\dfrac{d}{a+b+c+d}< M< \left(\dfrac{a}{a+b}+\dfrac{b}{a+b}\right)+\left(\dfrac{c}{c+d}+\dfrac{d}{c+d}\right)\)hay 1<M<2.

Vậy M không có giá trị là số nguyên.

1 tháng 4 2017

Vãi Phân

2 tháng 4 2017

Đm không biết thì trả lời làm chi!!!!!!!!!!!!

16 tháng 5 2017

Giải:

Ta có:

\(\dfrac{a}{b}=\dfrac{-8}{11}\left(1\right)\Leftrightarrow1-\dfrac{a}{b}=1-\dfrac{-8}{11}\)

Hay \(\dfrac{b-a}{b}=\dfrac{11+8}{11}=\dfrac{19}{11}\left(2\right)\)

Thay \(b-a=190\) vào \(\left(2\right)\) ta được:

\(\dfrac{190}{b}=\dfrac{19}{11}\Leftrightarrow190.11=19b\Leftrightarrow b=110\)

Thay \(b=110\) vào \(\left(1\right)\) ta được:

\(\dfrac{a}{110}=\dfrac{-8}{11}\Leftrightarrow11a=-8.110\Leftrightarrow a=-80\)

Vậy phân số \(\dfrac{a}{b}\) cần tìm là \(\dfrac{-80}{110}\)

4 tháng 5 2018

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Thay b - a = 190 vào (1) ta được: Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Phân số a/b phải tìm là -80/110

23 tháng 6 2017

\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ad=bc\)

Ta có:

Nếu:

\(\dfrac{2a+c}{2b+d}=\dfrac{a-c}{b-d}\Leftrightarrow\left(2a+c\right)\left(b-d\right)=\left(a-c\right)\left(2b+d\right)\)

\(\Leftrightarrow2a\left(b-d\right)+c\left(b-d\right)=a\left(2b+d\right)-c\left(2b+d\right)\)

\(\Leftrightarrow2ab-2ad+bc-cd=2ab+ad-2bc+cd\)

\(\Leftrightarrow ad=bc\)

\(\Leftrightarrow\dfrac{2a+c}{2b+d}=\dfrac{a-c}{b-d}\left(đpcm\right)\)

4 tháng 6 2017

a) Ta có : điều đề bài cho:\(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Leftrightarrow\)\(\dfrac{a}{b}+1=\dfrac{c}{d}+1\)

=)\(\dfrac{a}{b}+\dfrac{b}{b}=\dfrac{c}{d}+\dfrac{d}{d}\)

=)\(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)(đpcm)

b) Điều đề bài cho:

\(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Leftrightarrow\)\(\dfrac{a}{b}-1=\dfrac{c}{d}-1\)

\(\Rightarrow\)\(\dfrac{a}{b}-\dfrac{b}{b}=\dfrac{c}{d}-\dfrac{d}{d}\)

\(\Rightarrow\)\(\dfrac{a-b}{b}=\dfrac{c-d}{d}\)(đpcm)

4 tháng 6 2017

NHT số 2 :))

16 tháng 4 2017

a) ; b) ; c) ; d) .

9 tháng 5 2017

22/55=2/5

-63/81=-7/9

20/-140=-1/7

-25/-75=1/3

Giải

Ta có : \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{20^2}< \dfrac{1}{19.20}\)

\(\Rightarrow\)D < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{19.20}\)

Nhận xét: \(\dfrac{1}{1.2}=1-\dfrac{1}{2};\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};...;\dfrac{1}{19.20}=\dfrac{1}{19}-\dfrac{1}{20}\)

\(\Rightarrow\) D< 1- \(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\)

D< 1 - \(\dfrac{1}{20}\)

D< \(\dfrac{19}{20}\)<1

\(\Rightarrow\)D< 1

Vậy D=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{5^2}\)<1

30 tháng 4 2017

A=\(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)

A=\(\dfrac{1}{2^2.1}+\dfrac{1}{2^2.2^2}+\dfrac{1}{3^2.2^2}+...+\dfrac{1}{50^2.2^2}\)

A=\(\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)\)

\(A=\dfrac{1}{2^2}\left(1+\dfrac{1}{2.2}+\dfrac{1}{3.3}+...+\dfrac{1}{50.50}\right)\)

Ta có :

\(\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4.4}< \dfrac{1}{3.4};...;\dfrac{1}{50.50}< \dfrac{1}{49.50}\)

\(\Rightarrow A< \dfrac{1}{2^2}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\right)\)Nhận xét :

\(\dfrac{1}{1.2}< 1-\dfrac{1}{2};\dfrac{1}{2.3}< \dfrac{1}{2}-\dfrac{1}{3};...;\dfrac{1}{49.50}< \dfrac{1}{49}-\dfrac{1}{50}\)

\(\Rightarrow A< \dfrac{1}{2^2}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)

A<\(\dfrac{1}{2^2}\left(1-\dfrac{1}{50}\right)\)

A<\(\dfrac{1}{4}.\dfrac{49}{50}\)<1

A<\(\dfrac{49}{200}< \dfrac{1}{2}\)

\(\Rightarrow A< \dfrac{1}{2}\)

16 tháng 4 2017

Giải bài 43 trang 26 SGK Toán 6 Tập 2 | Giải toán lớp 6

16 tháng 4 2017

Tính các tổng dưới đây sau khi đã rút gọn phân số :

a)\(\dfrac{7}{21}\) + \(\dfrac{9}{-36}\) = \(\dfrac{7}{21}\)+\(\dfrac{-9}{36}\)=\(\dfrac{1}{3}\)+\(\dfrac{-1}{4}\)=\(\dfrac{4}{12}\)+\(\dfrac{-3}{12}\)=\(\dfrac{1}{12}\)

b) \(\dfrac{-12}{18}\)+\(\dfrac{-21}{35}\)=\(\dfrac{-2}{3}\)+\(\dfrac{-3}{5}\)=\(\dfrac{-10}{15}\)+\(\dfrac{-9}{15}\)=\(\dfrac{-19}{15}\)

c) \(\dfrac{-3}{21}\)+\(\dfrac{6}{42}\)=\(\dfrac{-1}{7}\)+\(\dfrac{1}{7}\)=0

d) \(\dfrac{-18}{24}\)+\(\dfrac{15}{-21}\)=\(\dfrac{-18}{24}\)+\(\dfrac{-15}{21}\)=\(\dfrac{-3}{4}\)+\(\dfrac{-5}{7}\)=\(\dfrac{-21}{28}\)+\(\dfrac{-20}{28}\)=\(\dfrac{-41}{28}\)