K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2021

\(\dfrac{a}{b}\) chưa tối giản

→a⋮b.

vì a⋮b và b⋮b

→a+b⋮b

\(\dfrac{a+b}{b}\) chưa tối giản (ĐPCM)

7 tháng 5 2015

gọi d = ƯCLN(a; b) 

=> a chia hết cho d; b chia hết cho d

=> (a+b)  chia hết cho d 

=> d = ƯC(a +b ;b) => ƯCLN(a+b; b)  d

Mà a/b chưa tối giản => d > 1 

=> ƯCLN(a+b; b)  d > 1

=> a+b/ b chưa tối giản

12 tháng 3 2017

Gọi ƯCLN(a,b)=d (d khác 0,-1,1)

=>\(a⋮d\)

\(b⋮d\)

Sử dụng tính chất chia hết của 1 tổng, ta được:

\(\left(a+b\right)⋮d\)

Mà \(b⋮d\)

nên phân số \(\frac{a+b}{b}\) rút gọn được cho d.

Vậy phân số trên chưa tối giản.

12 tháng 4 2016

\(\frac{a+b}{b}\)=\(\frac{a}{b}+\frac{b}{b}=\frac{a}{b}+1\)

1 là ps tối giản, \(\frac{a}{b}\)à ps chưa tối giản 

suy ra \(\frac{a+b}{b}\) là ps tối giản

12 tháng 2 2018

vì đầu bài bảo nó chưa tối giản

12 tháng 2 2018

\(\frac{a}{b}\) là phân số chưa tối giản

\(\Leftrightarrow\hept{\begin{cases}a=k.a_1\\b=k.b_1\end{cases}}\) \(\left[ƯCLN\left(a;b\right)=k;ƯCLN\left(a_1;b_1\right)=1\right]\)

\(\frac{2a}{a-2b}=\frac{2.k.a_1}{k.a_1-2.k.b_1}=\frac{2k.a_1}{k\left(a_1-2.b_1\right)}\) chưa tối giản

=> đpcm

22 tháng 2 2018

a) Vì \(\frac{a}{b}\)là 1 ps chưa tối giản

=> Ta có công thức: \(\hept{\begin{cases}a=kd\\b=hd\end{cases}\left(\left(a;b\right);\left(k;h\right)=d=1\right)}\)

=> \(\frac{a}{a-b}=\frac{kd}{kd-hd}=\frac{kd}{\left(k-h\right)d}\)chưa là phân số tối giản ( có thể rút gọn dc nx)

b) \(\frac{2a}{a-2b}=\frac{2kd}{kd-2hd}=\frac{2kd}{\left(k-2h\right)d}\)chưa là phân số tối giản (có thể rút gọn dc nx)

7 tháng 4 2020

Trl :

Bạn kia làm đúng rồi nhé !

Học tốt nhé bạn @

19 tháng 3 2018

Gọi D là UCLN (a, b). Ta kí hiệu là (a, b). Áp dụng tính chất: P/s tối giản là p/s có UCLN = 1.

Ta có: 

(a, b) = D = 1

\(\Rightarrow\frac{a}{b}=1\) 

\(\Rightarrow\frac{2a+b}{a\left(a+b\right)}=\frac{2a+b}{a}+\frac{2a+b}{a+b}\). Mà (a, b) = 1

\(\Rightarrow\frac{2a+b}{a}+\frac{2a+b}{a+b}=\frac{2a+b}{D}+\frac{2a+b}{D+b}=\frac{2a+b}{1}+\frac{2a+b}{1+b}=\frac{2a+b}{1\left(1+b\right)}=1^{\left(đpcm\right)}\)

19 tháng 3 2018

Bạn bổ sung thêm: \(\frac{2a+b}{1\left(1+b\right)}=\frac{2a+b}{1+b}=\frac{2a}{1}=\frac{2:a}{1:a}=1^{\left(đpcm\right)}\)bổ sung thế này cho nó chắc nhé