\(\dfrac{a}{b}\) (a,b >0)

Chứng minh rằng : \...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2017

Giải:

Không giảm tính tổng quát

Giả sử \(a\ge b\Rightarrow a=b+m\left(m\ge0\right)\)

Ta có:

\(\dfrac{a}{b}+\dfrac{b}{a}=\dfrac{b+m}{b}+\dfrac{b}{b+m}\)

\(=1+\dfrac{m}{b}+\dfrac{b}{b+m}\ge1+\dfrac{m}{b+m}+\dfrac{b}{b+m}\)

\(=1+\dfrac{m+b}{b+m}=1+1=2\)

Dấu "=" xảy ra khi \(\Leftrightarrow\left\{{}\begin{matrix}m=0\\a=b\end{matrix}\right.\)

Vậy \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\) (Đpcm)

3 tháng 4 2017

Thankshaha

6 tháng 4 2017

Giả sử \(a\ge b\Rightarrow a=b+m\left(m\ge0\right)\)

Ta có :

\(\dfrac{a}{b}+\dfrac{b}{a}=\dfrac{b+m}{b}+\dfrac{b}{b+m}\) \(=1+\dfrac{m}{b}+\dfrac{b}{b+m}\ge1\) \(+\dfrac{m}{b+m}+\dfrac{b}{b+m}\)

\(=1+\dfrac{m+b}{b+m}=1+1=2\)

Dấu \("="\) chỉ xảy ra khi \(\left\{{}\begin{matrix}m=0\\a=b\end{matrix}\right.\)

Vậy \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\) \(\rightarrowđpcm\)

~ Chúc bn học tốt ~

6 tháng 4 2017

Ta có : \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}+\dfrac{b}{a}}\) ( theo bất đẳng thức Cô-si )

\(\Rightarrow\) \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)

21 tháng 7 2017

Bài 2 : đề bài này chỉ cần a,b>0 , ko cần phải thuộc N* đâu

a, Áp dụng bất đẳng thức AM-GM cho 2 số lhoong âm a,b ta được :

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ba}}=2\) . Dấu "=" xảy ra khi a=b

b , Áp dụng BĐT AM-GM cho 2 số không âm ta được : \(a+b\ge2\sqrt{ab}\)

\(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{ab}}=\dfrac{2}{\sqrt{ab}}\)

Nhân vế với vế ta được :

\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2.2.\dfrac{\sqrt{ab}}{\sqrt{ab}}=4\left(đpcm\right)\)

Dấu "="xảy ra tại a=b

21 tháng 7 2017

Bài 1.

Vì a, b, c, d \(\in\) N*, ta có:

\(\dfrac{a}{a+b+c+d}< \dfrac{a}{a+b+c}< \dfrac{a}{a+b}\)

\(\dfrac{b}{a+b+c+d}< \dfrac{b}{a+b+d}< \dfrac{b}{a+b}\)

\(\dfrac{c}{a+b+c+d}< \dfrac{c}{b+c+d}< \dfrac{c}{c+d}\)

\(\dfrac{d}{a+b+c+d}< \dfrac{d}{a+c+d}< \dfrac{d}{c+d}\)

Do đó \(\dfrac{a}{a+b+c+d}+\dfrac{b}{a+b+c+d}+\dfrac{c}{a+b+c+d}+\dfrac{d}{a+b+c+d}< M< \left(\dfrac{a}{a+b}+\dfrac{b}{a+b}\right)+\left(\dfrac{c}{c+d}+\dfrac{d}{c+d}\right)\)hay 1<M<2.

Vậy M không có giá trị là số nguyên.

5 tháng 5 2018

Giải sách bà i tập Toán 6 | Giải bà i tập Sách bà i tập Toán 6

18 tháng 5 2017

a)Ta có:\(\dfrac{1}{b}-\dfrac{1}{b+1}=\dfrac{b+1-b}{b\left(b+1\right)}=\dfrac{1}{b^2+b}< \dfrac{1}{b^2}\)(do b>1)

\(\dfrac{1}{b-1}-\dfrac{1}{b}=\dfrac{b-b+1}{\left(b-1\right)b}=\dfrac{1}{b^2-b}>\dfrac{1}{b^2}\)(do b>1)

b)Áp dụng từ câu a

=>\(\dfrac{1}{2}-\dfrac{1}{3}< \dfrac{1}{2^2}< \dfrac{1}{1}-\dfrac{1}{2}\)

\(\dfrac{1}{3}-\dfrac{1}{4}< \dfrac{1}{3^2}< \dfrac{1}{2}-\dfrac{1}{3}\)

.........................

\(\dfrac{1}{9}-\dfrac{1}{10}< \dfrac{1}{9^2}< \dfrac{1}{8}-\dfrac{1}{9}\)

=>\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}< S< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{8}-\dfrac{1}{9}\)

=>\(\dfrac{1}{2}-\dfrac{1}{10}< S< 1-\dfrac{1}{9}\)

=>\(\dfrac{2}{5}< S< \dfrac{8}{9}\)(đpcm)

18 tháng 5 2017

thanks bn nhìu

6 tháng 3 2018

So sánh:\(\dfrac{237}{142}\)\(\dfrac{246}{151}\)

* Bài làm:

\(\dfrac{237}{142}\) > 1 => \(\dfrac{237}{142}\) > ​\(\dfrac{237+9}{142+9}\) hay \(\dfrac{237}{142}\) > \(\dfrac{246}{151}\)

5 tháng 5 2018

a) Giải tương tự bài 6.5 a)

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

27 tháng 4 2017

b)

\(B=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\\ 2B=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2015}}\\ 2B-B=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2015}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\right)\\ B=1-\dfrac{1}{2^{2016}}< 1\)

Vậy B < 1 (đpcm)

27 tháng 4 2017

a)

Để \(A=\dfrac{3n+2}{n-1}\) nhận giá trị nguyên thì \(3n+2⋮n-1\)

\(3n+2=3n-3+5=3\left(n-1\right)+5\\ 3n+2⋮n-1\Rightarrow3\left(n-1\right)+5⋮n-1\Rightarrow5⋮n-1\Rightarrow n-1\inƯ\left(5\right)\)

Ư(5) = {-5;-1;1;5}

n-1 -5 -1 1 5
n -4 0 2 6

11 tháng 4 2017

Ta có :

\(A=\dfrac{1}{1.300}+\dfrac{1}{2.301}+\dfrac{1}{3.302}+.............+\dfrac{1}{101.400}\)

\(299A=\dfrac{299}{1.300}+\dfrac{299}{2.301}+\dfrac{299}{3.302}+...................+\dfrac{299}{101.400}\)

\(299A=1-\dfrac{1}{300}+\dfrac{1}{2}-\dfrac{1}{301}+..............+\dfrac{1}{101}-\dfrac{1}{400}\)

\(299A=\left(1+\dfrac{1}{2}+................+\dfrac{1}{101}\right)-\left(\dfrac{1}{300}+\dfrac{1}{301}+..............+\dfrac{1}{400}\right)=C\)

\(\Rightarrow A=\dfrac{C}{299}\)

Lại có :

\(B=\dfrac{1}{1.102}+\dfrac{1}{2.103}+\dfrac{1}{3.104}+................+\dfrac{1}{299.400}\)

\(101B=\dfrac{101}{1.102}+\dfrac{101}{2.103}+\dfrac{101}{3.104}+...............+\dfrac{101}{299.400}\)

\(101B=1-\dfrac{1}{102}+\dfrac{1}{2}-\dfrac{1}{103}+..................+\dfrac{1}{299}-\dfrac{1}{400}\)

\(101B=\left(1+\dfrac{1}{2}+..............+\dfrac{1}{299}\right)-\left(\dfrac{1}{102}-\dfrac{1}{103}+...............+\dfrac{1}{400}\right)=C\)

\(\Rightarrow B=\dfrac{C}{101}\)

\(\Rightarrow\dfrac{A}{B}=\dfrac{C}{101}:\dfrac{C}{299}=\dfrac{101}{299}\)

~ Chúc bn học tốt ~

a) (1/7.x-2/7).(-1/5.x-2/5)=0

=> 1/7.x-2/7=0hoặc-1/5.x-2/5=0

*1/7.x-2/7=0

1/7.x=0+2/7

1/7.x=2/7

x=2/7:1/7

x=2

b)1/6.x+1/10.x-4/5.x+1=0

(1/6+1/10-4/5).x+1=0

(1/6+1/10-4/5).x=0-1

(1/6+1/10-4/5).x=-1

(-8/15).x=-1

x=-1:(-8/15) =15/8

23 tháng 5 2018

Ta có : \(\frac{a}{b}+\frac{b}{a}-2\)

\(=\frac{a^2}{ab}+\frac{b^2}{ab}-\frac{2ab}{ab}\)

\(=\frac{a^2-2ab+b^2}{ab}\)

\(=\frac{\left(a-b\right)^2}{ab}\ge0\) ( do a;b > 0 )

Dấu "=" xảy ra khi :

\(a-b=0\Leftrightarrow a=b\)

Vậy ...

23 tháng 5 2018

Áp dụng bđt AM-GM: \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{ab}{ab}}=2\)

Dấu "=" xảy ra khi: a=b