Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A=\(\frac{6n-4}{2n+3}=\frac{6n+9-5}{2n+3}=3-\frac{5}{2n+3}\)
Để A nguyên thì 2n+3 \(\in\)Ư (5) ={\(\pm1;\pm5\)}
thay lần lượt vào để tìm n nha bn
a) M=-(x-2)2
ta có (x-2)2 >=0 với mọi x
=> -(x-2)2 =<0. Dấu "=" xảy ra <=> (x-2)2=0
<=> x-2=0
<=> x=2
Vậy MaxM=0 đạt được khi x=2
b) Ta có |x+5| >=0 với mọi x
=> -|x+5| =<0 => -|x+5|-2 =<-2
Dấu "=" xảy ra <=> |x+5|=0
<=> x=-5
Vậy MaxN=-2 đạt được khi x=-5
\(A=\frac{3n-5}{n+4}\) là số nguyên
\(\Leftrightarrow3n-5⋮n+4\)
\(\Rightarrow3n+12-17⋮n+4\)
\(\Rightarrow3\left(n+4\right)-17⋮n+4\)
Vì \(3\left(n+4\right)⋮n+4\)
\(\Rightarrow17⋮n+4\)
\(\Rightarrow n+4\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
\(\Rightarrow n\in\left\{-3;-5;13;-21\right\}\)
Vậy \(n\in\left\{-3;-5;-13;-21\right\}\).
\(A=\frac{3n-5}{n+4}=\frac{3\left(n+4\right)-17}{n+4}=3-\frac{17}{n+4}\)
Để A có giá trị nguyên => \(\frac{17}{n+4}\)có giá trị nguyên
=> \(17⋮n+4\)
=> \(n+4\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
n+4 | 1 | -1 | 17 | -17 |
n | -3 | -5 | 13 | -21 |
\(\frac{n+1}{n-2}=\frac{\left(n-2\right)+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)
Để \(\frac{3}{n-2}\in Z\) <=> 3 ⋮ n - 2 => n - 2 ∈ Ư ( 3 ) = { - 3 ; - 1 ; 1 ; 3 }
=> n ∈ { - 1 ; 1 ; 3 ; 5 }