Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\frac{2\left(4n+3\right)+187}{4n+3}=2+\frac{187}{4n+3}\)
Để A nguyên => \(\frac{187}{4n+3}\inℤ\)
=> \(4n+3\inƯ\left(187\right)\)
Đến đây bạn tự giải tiếp nha.
Đặt \(A=\frac{6n+99}{3n+4}=\frac{6n+8+91}{3n+4}=\frac{2\left(3n+4\right)91}{3n+4}+\frac{91}{3n+4}=2+\frac{91}{3n+4}\)
a) Để A là số tự nhiên thì \(91⋮3n+4⋮3n+4\)là ước của 91 hay 3n + 4 \(\in\left\{1;7;13;91\right\}\)
Ta có bảng :
3n + 4 | 1 | 7 | 13 | 91 |
n | -1 | 1 | 3 | 29 |
nhận xét | loại | thỏa mãn | thỏa mãn | thỏa mãn |
Vậy ......
b) Để A là phân số tối giản thì \(91\text{không chia hết cho 3n + 4 hay 3n + 4 không là ước của 91}\)
=> 3n + 4 ko chia hết cho ước nguyên tố của 91
=> 3n + 4 ko chia hết cho 7 => \(n\ne7k+1\)
=> 3n + 4 ko chia hết cho 13 => \(n\ne13m+3\)
a A=\(\frac{4n+3+4n+3+187}{4n+3}\)
A=2+\(\frac{187}{4n+3}\)
suy ra để A là một số nguyên và 187 phải chia hết cho 4n+3
suy ra 4n+3 thuộc ước của 187
Ư(187)= ( 11,17)
suy ra 4n=8;14
vậy n=2
a, A=\(\frac{8n+193}{4n+3}\)
A=\(\frac{4n+3+4n+3+187}{4n+3}\)
A=\(\frac{\left(4n+3\right).2}{4n+3}\)+\(\frac{187}{4n+3}\)
A= 2+\(\frac{187}{4n+3}\)
suy ra \(\frac{187}{4n+3}\)là một số nguyên và 187 phải chia hết cho 4n+3
\(\Rightarrow\)4n+3 thuộc ước của 187
Ư(187)= ( 11,17)
suy ra 4n=8;14
vậy n=2
a) Để B là phân số <=> 4n + 1 \(\ne\)0 <=> 4n \(\ne\)-1 <=> n \(\ne\)-1/4
b) Ta có: B = \(\frac{8n+2}{4n+1}=\frac{2.\left(4n+1\right)}{4n+1}=2\)
Vậy với mọi n (n \(\ne\)-1/4) thì B là số nguyên
a) Để B là phân số thì
\(\hept{\begin{cases}8n+2\inℤ\\4n+1\inℤ\\4n+1\ne0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}n\inℤ\\n\ne-\frac{1}{4}\end{cases}}\)
b) \(\frac{8n+2}{4n+1}=\frac{2.\left(4n+1\right)}{4n+1}=2\)
Vậy với mọi giá trị của n là số nguyên thì B là số nguyên