\(\frac{6n+7}{2n+3}\)

a)Tìm số nguyên n để B có giá trị nguyên

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2015

a, để B là số nguyên thì 6n+7 chia hết cho 2n+3

=> 6n+9-2 chia hết cho 2n+3

Vì 6n+9 chia hết cho 2n+3

=> 2 chia hết cho 2n+3

Mà 2n+3 lẻ

=> 2n+3 thuộc ước lẻ của 2

2n+3n
1-1
-1-2    

KL: n\(\in\){-1; -2}

7 tháng 4 2019

đợi chút nha

7 tháng 4 2019

a.\(A=\frac{6n+7}{2n+1}=\frac{3\left(2n+1\right)-3+7}{2n+1}=3+\frac{4}{2n+1}\)

Để A nguyên thì 4 phải chia hết cho 2n+1

=> 2n+1 \(\varepsilon\)Ư(4) = {-4;-2;-1;1;2;4}

Mà 2n + 1 là số lẻ

=> 2n + 1 \(\varepsilon\){-1;1}

=> 2n \(\varepsilon\){-2;0}

=> n \(\varepsilon\){-1;0}

Vậy:...

14 tháng 3 2017

M=(6n+4-5):(3n+2)=2-5:(3n+2)

a) để M nguyên thì (3n+2) phải là ước của 5

=> 3n+2={-5; -1; 1; 5}

+/ 3n+2=-5 => n=-7/3 (loại)

+/ 3n+2=-1 => n=-1; M=7

+/ 3n+2=1 => n=-1/3 loại

+/ 3n+2=5 => n=1; M=-3

Đs: n={-1; 1}

b) để M đạt nhỏ nhất thì 5:(3n+2) là lớn nhất, hay 3n+2 đạt giá trị nhỏ nhất => n=0

M​​min=2-5/2=-1/2

15 tháng 7 2016

a) \(A=\frac{3n+9}{n-4}=\frac{3n-12}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\) nguyê

<=> n - 4 \(\in\) Ư(21) = {-21; -7; -3; -1; 1; 3; 7; 21}

<=> n \(\in\) {-17; -3; 1; 3; 5; 7; 11; 25}

Bạn tự tính giá trị với mỗi n

b) Tương tự

15 tháng 7 2016

Thank you các bạn nha !

15 tháng 11 2023

Vũ™©®×÷|

19 tháng 3 2018

\(b)\) Ta có : 

\(A=\frac{6n-1}{3n+2}=2-\frac{5}{3n+2}\) ( câu a mình đã phân tích rồi nên khỏi phân tích lại ) 

Để A đạt GTNN thì \(\frac{5}{3n+2}\) phải đạt GTLN hay nói cách khác \(3n+2>0\) và đạt GTNN

\(\Rightarrow\)\(3n+2=1\)

\(\Rightarrow\)\(3n=-1\)

\(\Rightarrow\)\(n=\frac{-1}{3}\) ( loại vì \(n\inℤ\) ) 

\(\Rightarrow\)\(3n+2=2\)

\(\Rightarrow\)\(3n=0\)

\(\Rightarrow\)\(n=0\)

Suy ra : \(A=2-\frac{5}{3n+2}=2-\frac{5}{3.0+2}=2-\frac{5}{2}=\frac{-1}{2}\)

Vậy \(A_{min}=\frac{-1}{3}\) khi \(n=0\)

Chúc bạn học tốt ~ 

19 tháng 3 2018

\(a)\) Ta có : 

\(\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=\frac{6n+4}{3n+2}-\frac{5}{3n+2}=\frac{2\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}=2-\frac{5}{3n+2}\)

Để \(A\inℤ\)  thì \(\frac{5}{3n+2}\inℤ\)\(\Rightarrow\)\(5⋮\left(3n+2\right)\)\(\Rightarrow\)\(\left(3n+2\right)\inƯ\left(5\right)\)

Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)

Suy ra : 

\(3n+2\)\(1\)\(-1\)\(5\)\(-5\)
\(n\)\(\frac{-1}{3}\)\(-1\)\(1\)\(\frac{-7}{3}\)

Mà \(n\inℤ\) nên \(n\in\left\{-1;1\right\}\)

Vậy \(n=1\) hoặc \(n=-1\)

Chúc bạn học tốt ~ 

24 tháng 7 2019

\(B=\frac{6n-5}{3n+1}\inℤ\)

=> 6n - 5 ⋮ 3n + 1

=> 6n + 2 - 7 ⋮ 3n + 1

=> 3(3n + 1) - 7 ⋮ 3n + 1

=> 7 ⋮ 3n + 1

=> 3n + 1 thuộc Ư(7)

=> 3n + 1 thuộc {-1; 1; -7; 7}

=> 3n thuộc {-2; 0; -8;  6}

=> n thuộc {0; 2} vì n thuộc Z

24 tháng 7 2019

a) Để \(B\inℤ\)

\(\Rightarrow\left(6n-5\right)⋮\left(3n+1\right)\)

\(\Rightarrow\left(6n+2-7\right)⋮\left(3n+1\right)\)

\(\Rightarrow2.\left(3n+1\right)-7⋮\left(3n+1\right)\)

Vì \(2.\left(3n+1\right)⋮\left(3n+1\right)\)

nên \(-7⋮3n+1\)

\(\Rightarrow3n+1\inƯ_{\left(-7\right)}\)

\(\Rightarrow3n+1\in\left\{1;-1;7;-7\right\}\)

Lập bảng xét 4 trường hợp ta có : 

\(3n+1\)\(1\)\(-1\)\(7\)\(-7\)
\(n\)\(0\)\(-\frac{2}{3}\)\(2\)\(-\frac{8}{3}\)

Vậy \(n\in\left\{0;2\right\}\)

29 tháng 7 2020

Ta có :

\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)

a. Để A nguyên thì \(\frac{13}{2n+3}\in Z\)

\(\Rightarrow2n+3\in\left\{-13;-1;1;13\right\}\)

\(\Rightarrow2n\in\left\{-16;-4;-2;10\right\}\)

\(\Rightarrow n\in\left\{-8;-2;-1;5\right\}\)

b. Bổ sung điều kiện : A thuộc Z 

Để  \(A_{max}\) thì \(\frac{13}{2n+3}_{min}\)

\(\Leftrightarrow2n+3_{max}\in Z^-\)

Mà \(A\in Z\Leftrightarrow2n+3=-13\) hoặc \(2n+3=-1\)

\(\Rightarrow A_{max}=3-\frac{13}{-1}=16\Leftrightarrow n=-2\left(tm:n\in Z\right)\)

Vậy Amax = 16 <=> n = -2

29 tháng 6 2022

Bn ơi