Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Vì A thuộc Z
\(\Rightarrow x-2\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x\in\left\{-3;1;3;7\right\}\)( tm x thuộc Z )
b. Ta có : \(B=\frac{x+2}{x-3}=\frac{x-3+5}{x-3}=1+\frac{5}{x-3}\)
Vì B thuộc Z nên 5 / x - 3 thuộc Z
\(\Rightarrow x-3\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x\in\left\{-2;2;4;8\right\}\)( tm x thuộc Z )
c. Ta có : \(C=\frac{x^2-x}{x+1}=\frac{x^2+x-2x+2-2}{x+1}=\frac{x\left(x+1\right)-2x+2-2}{x+1}\)
\(=x-2-\frac{2}{x+1}\)
Vi C thuộc Z nên 2 / x + 1 thuộc Z
\(\Rightarrow x+1\in\left\{-2;-1;1;2\right\}\)
\(\Rightarrow x\in\left\{-3;-2;0;1\right\}\) ( tm x thuộc Z )
\(A=\frac{x-2}{x+3}=\frac{\left(x+3\right)-5}{x+3}=1-\frac{5}{x+3}\)
Vậy để A nguyên thì \(x+3\inƯ\left(5\right)\)
Mà: Ư(5)={-1;1;5;-5}
=> x+3={1;-1;5;-5}
Ta có bảng sau
x+3 | 1 | -1 | 5 | -5 |
x | -2 | -4 | 2 | -8 |
Vậy x={-8;-4;-2;2} thì A nguyên
A = \(\frac{x-2}{x+3}\)=\(\frac{x+3-3-2}{x+3}\)= 1 +\(\frac{-5}{x+3}\)
suy ra x + 3 ∈ Ư(5) = { -5; -1 ; 1 ; 1}
x + 3 | -5 | -1 | 1 | 5 |
x | -8 | -4 | -2 | 2 |
Vây x ∈ { -8; -4; -2; 2}
\(1)\)
Để \(\frac{13}{a-1}\) là số nguyên thì \(13⋮\left(a-1\right)\)\(\Rightarrow\)\(\left(a-1\right)\inƯ\left(13\right)\)
Mà \(Ư\left(13\right)=\left\{1;-1;13;-13\right\}\)
Suy ra :
\(a-1\) | \(1\) | \(-1\) | \(13\) | \(-13\) |
\(a\) | \(2\) | \(0\) | \(14\) | \(-12\) |
Vậy \(a\in\left\{2;0;14;-12\right\}\)
\(2)\)
Ta có :
\(\frac{x}{5}=\frac{y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{3}=\frac{x+y}{5+3}=\frac{16}{8}=2\)
Do đó :
\(\frac{x}{5}=2\Rightarrow x=2.5=10\)
\(\frac{y}{3}=2\Rightarrow y=2.3=6\)
Vậy x=10 và y=6
a)để phân số 13/ x-1 thì:
13 phải chia hết cho x-1
=> x- 1 thuộc Ư(13)
=> x-1thuộc {1; (-1); 13; (-13) }
vậy x thuộc{2; 0; 14; (-12)}
b) để phân số đó là số nguyên thì :
x+3 chia hết cho x-2
<=> (x-2)+5 chia hết cho x-2
ta thấy x-2 chia hết cho x-2
=> 5 phải chia hết cho x- 2
=> x-2 thuộc Ư(5)
=> x-2 thuộc { 1; (-1); 5; (-5)}
vậy x thuộc{3; 1; 7; (-3)}
tk nha!
a) Để M thuộc Z <=> \(x+2\in B\left(3\right)=\left\{0;3;-3;6;-6;....\right\}\)
<=> x = B(3) - 2
b) Để N thuộc Z <=> 7 chia hết cho x-1
<=> \(x-1\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\)
Nếu x - 2= 1 thì x = 3
Nếu x - 2 = -1 thì x = 1
Nếu x - 2 = 7 thì x = 9
Nếu x - 2 = -7 thì x = -5
Vậy x = {-5;1;3;9}
a) Để M thuộc Z <=> x+2∈B(3)={0;3;−3;6;−6;....}
<=> x = B(3) - 2
b) Để N thuộc Z <=> 7 chia hết cho x-1
<=> x−1∈Ư(7)={1;7;−1;−7}
Nếu x - 2= 1 thì x = 3
Nếu x - 2 = -1 thì x = 1
Nếu x - 2 = 7 thì x = 9
Nếu x - 2 = -7 thì x = -5
Vậy x = {-5;1;3;9}
\(A=\frac{x-2}{x+3}\in Z\)
=> (x- 2) \(⋮\)(x+ 3)
=> (x- 2)-( x+3) \(⋮\)(x +3)
=> -5 \(⋮\)(x+ 3)
Ta có bảng sau:
Để A thuộc Z thì x= { -4;-8; -2; 2}