Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2)( 2x + 1 ) . ( y - 3 ) = 12
=>2x+1 và y-3 là ước của 12 là
Ư(12)=-12;-6;-4;-3;-2;-1;1;2;3;4;6;12
tự lập bảng
4)a)gọi d là UCLN(6n+5;3n+2)
ta có:
(6n+5)-[2(3n+2)] chia hết d
(6n+5)-[6n+4] chia hết d
1 chia hết d
d=1
vậy P tối giản
Bài 1:
Ta có \(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\) =>\(\frac{m}{2}-\frac{1}{2}=\frac{2}{n}\)
=>\(\frac{m-1}{2}=\frac{2}{n}\)
=> n(m-1) = 4
=> n và m-1 thuộc Ư(4)={1;2;4}
Ta có bảng sau:
m-1 | 1 | 2 | 4 |
n | 4 | 2 | 1 |
m | 2 | 3 | 5 |
Vậy (m;n)=(2;4),(3;2),(5;1)
Tử số mới là : 31 - n
Mẫu số mới là : 43 - n
Ta có sơ đồ sau :
Hiệu số phần bằng nhau là :
5 - 3 = 2
Hiệu của tử số và mẫu số là :
43 - 31 = 12
Tử số mới là :
12 : 2 x 3 = 18
Số tự nhiên n là :
31 - 18 = 13
Đáp số : 13.
Tổng tử và mẫu là:
87+133=220
Tổng số phần bằng nhau:
4+7=11 phần
Tử mới là:
220:11x4=80
Số a là:
87-80=7
Theo đề bài ta có
\(\frac{87-a}{133+a}=\frac{4}{7}\)
\(\Leftrightarrow7.\left(87-a\right)=4.\left(133+a\right)\)
\(\Leftrightarrow609-7a=532+4a\)
\(\Leftrightarrow11a=77\)
\(\Leftrightarrow a=7\)
Vậy số tự nhiên a cần tìm là a=7
Gọi số bớt ở tử số, thêm ở mẫu số ( cùng 1 số tự nhiên) cần tìm là: a
ta có: \(\frac{3-a}{5+a}=\frac{1}{3}\)
\(\Rightarrow\left(3-a\right)\times3=5+a\)
=> 9 - a x 3 = 5 + a
=> 9 - 5 = a + a x 3
4 = a x 4
=> a = 1
KL: số cần tìm là: 1
a. k = 1 thì 23k là số nguyên tố
b. k > 1 thì 23k là hợp số.
c. k = 0 thì 23k = 0 không phải là số nguyên tố và cũng không phải là hợp số
a) k = 1 => 23k = 23 . 1 = 23 ( là số nguyên tố )
b ) k > 1 => 23k là hợp số
c) k = 0 => 23k = 23 . 0 = 0 ( ko phải SNT cũng ko là HS )
#Tề _ Thiên