Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để A là phân số thì \(n-1\ne0\)
hay \(n\ne1\)
Vậy: Để A là phân số thì \(n\ne1\)
b) Để A là số nguyên thì \(4n+3⋮n-1\)
\(\Leftrightarrow4n-4+7⋮n-1\)
mà \(4n-4⋮n-1\)
nên \(7⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(7\right)\)
\(\Leftrightarrow n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;0;8;-6\right\}\)
Kết hợp ĐKXĐ, ta được: \(n\in\left\{2;0;8;-6\right\}\)
Vậy: Để A là số nguyên thì \(n\in\left\{2;0;8;-6\right\}\)
a: Để A là số tự nhiên thì 8n+6+187 chia hết cho 4n+3
=>\(4n+3\in\left\{1;-1;11;-11;17;-17;187;-187\right\}\)
mà n>0
nên \(n\in\left\{2;46\right\}\)
c: \(A=\dfrac{8n+6+187}{4n+3}=2+\dfrac{187}{4n+3}\)
Để A rút gọn được thì ƯCLN(8n+193;4n+3)<>1
mà 150<=n<=170
nên \(n\in\left\{156;165;167\right\}\)
\(a.\)
\(n-3\ne0\)
\(\Leftrightarrow n\ne3\)
\(b.\)
\(B\left(0\right)=\dfrac{-4}{3}\)
\(B\left(10\right)=\dfrac{4}{10-3}=\dfrac{4}{7}\)
\(B\left(-2\right)=\dfrac{4}{-2-3}=-\dfrac{4}{5}\)
Giải thích các bước giải:
a) Để B là phân số thì số nguyên n phải khác 0 và không thuộc Ư(4)
b)Nếu n=1 thì B=4/1-3=-2
Nếu n=2 thì B=4/2-3=-4
Nếu n=-3 thì B=4/-3-3=-2/3
\(a)\,\,A=\dfrac{13}{21} \Leftrightarrow \dfrac{2n+3}{4n+1}=\dfrac{13}{21} \\ \Leftrightarrow 21(2n+3)=13(4n+1)\\\Leftrightarrow 42n+63=52n+13\\\Leftrightarrow 42n-52n=13-63 \\\Leftrightarrow -10n=-50\\\Leftrightarrow n=(-50):(-10)\\\Leftrightarrow n=5\)
Gọi ƯC(10n-3,4n-10)=d ( d nguyên tố)
=>10n-3 chia hết cho d và 4n-10 chia hết chod
=>20n-6 chia hết chod và 20n -50 chia hết cho d
=>(20n-6)-(20n-50) chia hết cho d
=>44 chia hết cho d
=>de(2,11)
NẾU d=11
=>4n-3=11.k
=>n=(11k+3):4
Nếu d =2
=>4n-3=2k
=>n=(2k+3):4(loại vì neN
VẬY NẾU n=(2k+3) thì A rút gọn được
Ta có: A=\(\dfrac{10n-3}{4n-10}\) (1)
TH1: Để (1) có thể rút gọn thì 4n-10\(⋮\)10n-3
20n-50\(⋮\)20n-6
50\(⋮\)20n-6
Do đó 20n-6\(\in\)Ư(50)
Ư(50)={1;2;5;10;25;50}
Ta lập bảng sau:
TH2: Để (1) có thể rút gọn thì 10n-3\(⋮\)4n-10
20n-6\(⋮\)20n-50
6\(⋮\)20n-50
Do đó 20n-50\(\in\)Ư(6)
Ư(6)={1;2;3;6}
Ta lập bảng sau:
Vậy \(n\in\left\{\varnothing\right\}\).