Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}+\frac{1}{12}\)
\(\frac{a}{b}=\left(1+\frac{1}{2}\right)+\left(\frac{1}{2}+\frac{1}{11}\right)+...+\left(\frac{1}{6}+\frac{1}{7}\right)\)
\(\frac{a}{b}=\frac{13}{1.2}+\frac{13}{2.11}+...+\frac{13}{6.7}\)
chọn mẫu chung
Thừa số phụ tương ứng k1,k2,k3,...,k6 ( 6 phân số )
\(\frac{a}{b}=\frac{13k_1}{1.2.3...12}+\frac{13k_2}{1.2.3...12}+...+\frac{13k_6}{1.2.3...12}\)
\(\frac{a}{b}=\frac{13.\left(k_1+k_2+k_3+...+k_6\right)}{1.2.3...12}\)
Vì tử số \(⋮\)13. Mẫu không chứa thừa số nguyên tố là 13
nên khi rút gọn phân số \(\frac{a}{b}\) và phân số tối giản thì a \(⋮\)13
Ta có :
n2 + n + 1 = n . ( n + 1 ) + 1
Vì n . ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên ⋮2 ⇒n . ( n + 1 ) + 1 là một số lẻ nên không chia hết cho 4
Vì n . ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9. Do đó n . ( n + 1 ) + 1 không có tận cùng là 0
hoặc 5 . Vì vậy, n2 + n + 1 không chia hết cho 5
P/s đùng để ý đến câu trả lời của mình
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
Tính biểu thức 1/1+1/2+1/3+...+1/98 bằng cách ghép thành từng cặp các phân số cách đều 2 phân số đầu và cuối
ta được :
( 1/1+1/98)+( 1/2+1/97 ) + ...+ ( 1/49+1/50 )
= 99/1.98+99/2.97+...+99/49.50
gọi các thừa số phụ là k1, k2, k3, ..., k49 thì
A = 99.(k1+k2+k3+...+k49)/99.(k1+k2+...+k49) x 2.3.4....97.98
= 99.(k1+k2+...+k49)
=> A chia hết cho 49 (1)
b)
Cộng 96 p/s theo từng cặp :
a/b = ( 1/1+1/96)+(1/2+1/95)+(1/3+1/94)+...+(1/48+1/49)
.................................................. ( làm tiếp nhé )
mỏi woa
bài này vào câu hỏi tương tự khác biệt