K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: A là phân số khi 3n+3<>0

=>n<>-1

b: \(A=\dfrac{12}{3\left(n+1\right)}=\dfrac{4}{n+1}\)

Để A nguyên thì \(n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(n\in\left\{0;-2;1;-3;3;-5\right\}\)

a: Để A là phân số thì 3n+3<>0

=>n<>-1

b: \(A=\dfrac{12n}{3\left(n+1\right)}=\dfrac{4n}{n+1}\)

Để A là số nguyên thì 4n+4-4 chia hết cho n+1

=>\(n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(n\in\left\{0;-2;1;-3;3;-5\right\}\)

a: Để A là số tự nhiên thì

6n+8+91 chia hết cho 3n+4

mà n>=0

nên \(3n+4\in\left\{7;13;91\right\}\)

=>n=1 hoặc n=3

b: Để A là phân số tối giản thì 3n+4 ko là ước của 91

=>3n+4<>7k và 3n+4<>13a

=>n<>(7k-4)/3 và n<>(13a-4)/3(k,a là các số tự nhiên)

12 tháng 10 2017

a: Để A là số tự nhiên thì n-6+15 chia hết cho n-6

=>\(n-6\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)

mà n>6

nên \(n\in\left\{7;9;11;21\right\}\)

b: \(A=\dfrac{n-6+15}{n-6}=1+\dfrac{15}{n-6}\)

Để A là phân số tối giản thì ƯCLN(n-9;n-6)=1

=>ƯCLN(15;n-6)=1

=>n-6<>3k và n-6<>5k

=>\(n\notin\left\{3k+6;5k+6\right\}\)

2 tháng 2 2021

\(a)\,\,A=\dfrac{13}{21} \Leftrightarrow \dfrac{2n+3}{4n+1}=\dfrac{13}{21} \\ \Leftrightarrow 21(2n+3)=13(4n+1)\\\Leftrightarrow 42n+63=52n+13\\\Leftrightarrow 42n-52n=13-63 \\\Leftrightarrow -10n=-50\\\Leftrightarrow n=(-50):(-10)\\\Leftrightarrow n=5\)

4 tháng 5 2019

a) n ∈ Z và n ≠ –2

b) HS tự làm

c) n ∈ {-3;-1}