Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có công thức \(\frac{1}{k\left(k+1\right)}=\frac{1}{k}-\frac{1}{k+1}\)(bạn tự lên mạng coi cách chứng minh nha)
Áp dụng vào bài suy ra \(\frac{1}{1.2}=1-\frac{1}{2};\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3};...;\frac{1}{49.50}=\frac{1}{49}-\frac{1}{50}\)
Cộng theo vế ta được \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}< 1\)(đpcm)
để A=5/n-1 là phân số thì n#1
để A=5/n-1 là số nguyên thì 5 chia hết cho n-1
suy ra n-1 thuộc Ư(5)={1;-1;5;-5}
lập bảng ta có n={2;0;6;-4}
ta có ước của hai số nguyên liên tiếp bằng 1
suy ra Ư(n: n-1)=1 vậy n/n-1 là phân số tối giản
ta có 1/1x2+1/2x3+1/3x4+....+1/49/50
=1/1-1/2+1/2-1/3+1/4-1/5 +......+1/49-1/50
=1-1/50
=49/50<1
vậy 1/1x2+1/2x3+1/3x4+.....+1/49x50<1
đề là dấu chia hết phải ko bạn
\(\frac{n+13}{n-2}\)=\(\frac{n-2+15}{n-2}\)=1+\(\frac{15}{n-2}\)
để n+13 \(⋮\) n-2 thì 15 \(⋮\) n-2
=)) n-2 \(\in\) Ư(15) ={\(\pm\)1 ; \(\pm\)3 ; \(\pm\)5 ; \(\pm\)15 }
+/ n-2 = -1 \(\Rightarrow\)n=1
+/ n-2 = 1 \(\Rightarrow\)n=3
+/ n-2 = -3 \(\Rightarrow\)n=-1
+/ n-2 =3 \(\Rightarrow\)n=5
+/ n-2 =-5 \(\Rightarrow\)n=-3
+/n-2=5 =)) n = 7
+/ n-2=-15 =)) n=-13
+/ n-2 = 15 =)) n=17
vậy với n={-13;-3;-1;1;3;5;7;17}
Câu 1:
a) \(\dfrac{n-5}{n-3}\)
Để \(\dfrac{n-5}{n-3}\) là số nguyên thì \(n-5⋮n-3\)
\(n-5⋮n-3\)
\(\Rightarrow n-3-2⋮n-3\)
\(\Rightarrow2⋮n-3\)
\(\Rightarrow n-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Ta có bảng giá trị:
n-1 | -2 | -1 | 1 | 2 |
n | -1 | 0 | 2 | 3 |
Vậy \(n\in\left\{-1;0;2;3\right\}\)
b) \(\dfrac{2n+1}{n+1}\)
Để \(\dfrac{2n+1}{n+1}\) là số nguyên thì \(2n+1⋮n+1\)
\(2n+1⋮n+1\)
\(\Rightarrow2n+2-1⋮n+1\)
\(\Rightarrow1⋮n+1\)
\(\Rightarrow n-1\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta có bảng giá trị:
n-1 | -1 | 1 |
n | 0 | 2 |
Vậy \(n\in\left\{0;2\right\}\)
Câu 2:
a) \(\dfrac{n+7}{n+6}\)
Gọi \(ƯCLN\left(n+7;n+6\right)=d\)
\(\Rightarrow\left[{}\begin{matrix}n+7⋮d\\n+6⋮d\end{matrix}\right.\)
\(\Rightarrow\left(n+7\right)-\left(n+6\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{n+7}{n+6}\) là p/s tối giản
b) \(\dfrac{3n+2}{n+1}\)
Gọi \(ƯCLN\left(3n+2;n+1\right)=d\)
\(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\n+1⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3.\left(n+1\right)⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3n+3⋮d\end{matrix}\right.\)
\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{3n+2}{n+1}\) là p/s tối giản