K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2018

\(A=\frac{n+1}{n-2}\)

\(A=\frac{n-2+3}{n-2}\)

\(A=1+\frac{3}{n-2}\)

\(\Leftrightarrow n-2\inƯ\left(3\right)\)

\(\Leftrightarrow n-2\in\left\{\pm1;\pm3\right\}\)

đến đây lập bảng là xong

B là số nguyên thì n+1 chia hết n-2

(n+1)-(n-2)chia hết n-2

n+1-n+2chia hết n-2

3chia hết n-2

n-2 thuộc Ư(3)={-1;1;-3;3}

n thuộc {1;3;-1;5}

B=n+1/n-2=n-2+3/n-2=n-2/n-2+3/n-2=1+3/n-2

để B lớn nhất 3/n-2 lớn nhất

nên n-2 bé nhất

n-2 là số nguyên dương bé nhất

 => n-2=1

     n=3  

9 tháng 3 2021

a, \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{3}{n-2}\)

\(\Rightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

n - 21-13-3
n315-1

b, Ta có :  \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{3}{n-2}+1\ge1\)

Dấu ''='' xảy ra <=> n - 2 = 1 <=> n = 3

Vậy GTLN A là 1 khi n = 3

NM
4 tháng 5 2021

ta có \(A=\frac{n+1}{n-2}=1+\frac{3}{n-2}\)

Để A nguyên thì n-2 là ước của 3 hay 

\(n-2\in\left\{\pm1,\pm3\right\}\Leftrightarrow n\in\left\{-1,1,3,5\right\}\)

Để A có giá trị lớn nhất thì \(\frac{3}{n-2}\) đạt giá trị lớn nhất.

khi \(n-2>0\) và đạt giá trị nhỏ nhất

hay n=3.

17 tháng 3 2017

a) Ta có : A= (n+1)/(n-2) = (n-2 +3)/(n -2) = 1+ 3/(n-2)    Vậy để A nguyên thì (n-2) thuộc ước 3 ( +-1; +-3 )  <=> N-2 =1  <=> n =3                                                                                                                                                                        <=> N-2 =-1  <=> n= 1                                                                                                                                                                          <=> N-2 =3  <=> n= 5                                                                                                                                                                   <=> N-2 =-3  <=> n= -1

17 tháng 3 2017

b) ta có : A max => (n-2) min mà (n-2) thuộc Z =>(n-2)>0 <=> (n-2 ) =1 <=> n=3

17 tháng 5 2016

Phân tích n+1/n+2 ra cho mình thôi cũng được 

25 tháng 8 2016

a) \(\frac{10n}{5n-3}=\frac{10n-6+6}{5n-3}=\frac{10n-6}{5n-3}+\frac{6}{5n-3}\)

Để \(\frac{10n}{5n-3}\in Z\Rightarrow2+\frac{6}{5n-3}\in Z\Rightarrow\frac{6}{5n-3}\in Z\Rightarrow5n-3\in U\left(6\right)\)

Ta có bảng sau:

  5n - 3  -6  -3  -2  -1   1  2   3  6
    n  -0,6  0 0,2 0,4 0,8  1  1,2  1,8

Mà n thuộc Z  => n = { 0 ; 1 }

b) Để A lớn nhất thì \(2+\frac{6}{5n-3}\)có giá trị lớn nhất  => \(\frac{6}{5n-3}\)lớn nhất 

=> 5n - 3 nguyên dương nhỏ nhất ; 5n - 3 thuộc ước của 6 và n thuộc Z

=> 5n - 3 = 2  => x = 1 và \(\frac{6}{5n-3}=\frac{6}{2}=3\)  

Thay \(3=\frac{6}{5n-3}\)vào \(A=2+\frac{6}{5n-3}\)ta có:

\(A=2+3=5\)

Vậy giá trị lớn nhất của A là 5 khi x = 1

26 tháng 8 2016

a, Ta có : \(\frac{10n}{5n-3}=\frac{10n-6+6}{5n-3}\)

                             \(=\frac{10n-6}{5n-3}+\frac{6}{5n-3}\)

                             \(=2+\frac{6}{5n-3}\)

Để \(\frac{10n}{5n-3}\in Z\Rightarrow2+\frac{6}{5n-3}\in Z\)

\(\Rightarrow\frac{6}{5n-3}\in Z\)

\(\Rightarrow6\)chia hết cho\(5n-3\)

\(\Rightarrow5n-3\inƯ\left(6\right)\)

Ta có bảng sau :

       
       
       
5n-31-12-23-3
5n425160
n0,80,410,21,20

Vì \(n\in Z\)=> \(n\in\left\{0;1\right\}\)