Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
10n/5n-3.
cho nên n=1 để A lớn nhất
A giá trị lớn nhất : A=5
đúng rùi đó bạn nhớ tích nhà
ta có
+ ) để B thuộc Z thì 10n phải chia hết cho 5n - 3
+ ) và 5n - 3 chia hết cho 5n - 3 => 2.( 5n - 3 ) = 10n -6 chia hết cho 5n - 3
từ 2 điều kiện trên =>( 10n -6 ) - ( 10n ) chia hết cho 5n -3 ( áp dụng tính chất đồng dư tự kham khảo )
=> 6 chia hết cho 5 n - 3 => 5n - 3 thuộc ước của 6
th1) 5n - 3 = -6 => n ko có giá trị
th2) 5n - 3 = -3 => ...
th3) 5n -3 = -2 => ...
th4) 5n - 3 = -1 => ...
th5) 5n - 3 = 1 => ...
th6) 5n - 3 = 2 => ....
còn 2 th nua tu =>
a)
\(A=\dfrac{2x+3}{x-2}=\dfrac{2\left(x-2\right)+7}{x-2}=2+\dfrac{7}{x-2}\)
Vì x nguyên nên để A có giá trị nguyên thì \(\dfrac{7}{x-2}\) có giá trị nguyên
Khi đó x - 2 ∈ Ư(7) = {-7; -1; 1; 7}
x-2 | -7 | -1 | 1 | 7 |
x | -5 | 1 | 2 | 9 |
Vậy x ∈ {-5; 1; 2; 9}.
khi ko mún tích thì tích 1 tích
khi mún tích thì tích 50 tích
a) \(\frac{10n}{5n-3}=\frac{10n-6+6}{5n-3}=\frac{10n-6}{5n-3}+\frac{6}{5n-3}\)
Để \(\frac{10n}{5n-3}\in Z\Rightarrow2+\frac{6}{5n-3}\in Z\Rightarrow\frac{6}{5n-3}\in Z\Rightarrow5n-3\in U\left(6\right)\)
Ta có bảng sau:
Mà n thuộc Z => n = { 0 ; 1 }
b) Để A lớn nhất thì \(2+\frac{6}{5n-3}\)có giá trị lớn nhất => \(\frac{6}{5n-3}\)lớn nhất
=> 5n - 3 nguyên dương nhỏ nhất ; 5n - 3 thuộc ước của 6 và n thuộc Z
=> 5n - 3 = 2 => x = 1 và \(\frac{6}{5n-3}=\frac{6}{2}=3\)
Thay \(3=\frac{6}{5n-3}\)vào \(A=2+\frac{6}{5n-3}\)ta có:
\(A=2+3=5\)
Vậy giá trị lớn nhất của A là 5 khi x = 1
a, Ta có : \(\frac{10n}{5n-3}=\frac{10n-6+6}{5n-3}\)
\(=\frac{10n-6}{5n-3}+\frac{6}{5n-3}\)
\(=2+\frac{6}{5n-3}\)
Để \(\frac{10n}{5n-3}\in Z\Rightarrow2+\frac{6}{5n-3}\in Z\)
\(\Rightarrow\frac{6}{5n-3}\in Z\)
\(\Rightarrow6\)chia hết cho\(5n-3\)
\(\Rightarrow5n-3\inƯ\left(6\right)\)
Ta có bảng sau :
Vì \(n\in Z\)=> \(n\in\left\{0;1\right\}\)