Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để A là phân số thì : \(n-2\ne0=>n\ne2\)
b) Để A nhận giá trị nguyên âm lớn nhất
\(=>A=-1\\ =>\dfrac{n-6}{n-2}=-1\\ =>n-6=-\left(n-2\right)\\ =>n-6=-n+2\\ =>n+n=6+2\\ =>2n=8\\ =>n=4\left(TMDK\right)\)
c) \(A=\dfrac{n-6}{n-2}=\dfrac{n-2-4}{n-2}=1-\dfrac{4}{n-2}\)
Để A nhận gt số nguyên thì : \(\dfrac{4}{n-2}\in Z=>4⋮\left(n-2\right)\\ =>n-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\\ =>n\in\left\{3;1;4;0;6;-2\right\}\)
Đến đây bạn lập bảng giá trị rồi thay từng gt n vào bt A, giá trị nào cho A là STN thì bạn nhận gt đó ạ.
d) Mình nghĩ bạn thiếu đề ạ
a/ mk chua tim ra , thong cam
b/ mk tìm n = -2 ., -1 hoặc 0
a) A \(=\frac{2n-1}{n-3}=\frac{2n-6}{n-3}+\frac{5}{n-3}\) nguyên
<=> n - 3 thuộc Ư(5) = {-5; -1; 1; 5}
<=> n thuộc {-2; 2; 4; 8}
b) A lớn nhất <=> \(\frac{5}{n-3}\) lớn nhất <=> n - 3 là số nguyên dương nhỏ nhất
<=> n - 3 = 1 <=> n = 4
A=\(\frac{2n-1}{n-3}\)
a)Để A có giá trị nguyên thì 2n-1 phải chia hết cho n-3
2n-1
=2n-6+6-1
=2.(n-3)+5
n-3 chia hết cho n-3 nên 2(n-3) chia hết cho n-3
Vậy 5 cũng phải chia hết cho n-3
+n-3=1=>n=4
+n-3=5=>n=8
+n-3=-1=>n=2
+n-3=-5=>n=-2
Vậy n thuộc -2;2;8;4
b)Dễ thấy,để A có giá trị lớn nhất n=8
Chúc em học tốt^^
a) Đặt \(ƯCLN\left(5a+3,7a+4\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}5a+3⋮d\\7a+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}35a+21⋮d\\35a+20⋮d\end{matrix}\right.\)
\(\Rightarrow\left(35a+21\right)-\left(35a+20\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(ƯCLN\left(5a+3,7a+4\right)=1\) hay phân số \(\dfrac{5a+3}{7a+4}\) là phân số tối giản. Thế thì phân số này không thể rút gọn cho nguyên nào khác 1.
b) \(A=\dfrac{5a+3}{7a+4}\)
\(A=\dfrac{\dfrac{5}{7}\left(7a+4\right)+\dfrac{1}{7}}{7a+4}\)
\(A=\dfrac{5}{7}+\dfrac{1}{7\left(7a+4\right)}\)
Nếu \(a< 0\) thì \(A< \dfrac{5}{7}\) còn nếu \(a\ge0\) thì \(A>\dfrac{5}{7}\). Do đó ta chỉ cần tìm giá trị lớn nhất của A khi \(a>0\). Để A lớn nhất thì \(7a+4\) nhỏ nhất hay \(a=0\). Vậy để phân số A lớn nhất thì \(a=0\)
Lời giải:
$A=\frac{n^2+2n+1}{n^2+1}=1+\frac{2n}{n^2+1}$
$A=2+\frac{2n}{n^2+1}-1=2-(1-\frac{2n}{n^2+1})=2-\frac{n^2-2n+1}{n^2+1}$
$=2-\frac{(n-1)^2}{n^2+1}$
Vì $(n-1)^2\geq 0; n^2+1>0$ với mọi $n$ nguyên
$\Rightarrow \frac{(n-1)^2}{n^2+1}\geq 0$
$\Rightarrow A=2-\frac{(n-1)^2}{n^2+1}\leq 2$
Vậy GTNN của $A$ là $2$ khi $(n-1)^2=0$, tức là khi $n=1$.