\(\dfrac{2n+3}{4n+1}\) ( \(n\in Z\) )

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2021

\(a)\,\,A=\dfrac{13}{21} \Leftrightarrow \dfrac{2n+3}{4n+1}=\dfrac{13}{21} \\ \Leftrightarrow 21(2n+3)=13(4n+1)\\\Leftrightarrow 42n+63=52n+13\\\Leftrightarrow 42n-52n=13-63 \\\Leftrightarrow -10n=-50\\\Leftrightarrow n=(-50):(-10)\\\Leftrightarrow n=5\)

20 tháng 2 2018

3. Gọi d là ƯCLN(2n + 3, 4n + 8), d ∈ N*

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}}\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

Mà 2n + 3 không chia hết cho 2

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(2n+3,4n+8\right)=1\)

\(\Rightarrow\frac{2n+3}{4n+8}\) là phân số tối giản.

15 tháng 4 2019

a, Để A là phân số thì ta có điều kiện : \(n-1\ne0\) => \(n\ne1\)

Vậy điều kiện của n để A là phân số là \(n\ne1\)

Ta có : \(\frac{5}{n-1}\Rightarrow n-1\inƯ(5)\)

=> A là số nguyên <=> \(n-1\in\left\{\pm1;\pm5\right\}\)

Lập bảng :

n - 11-15-5
n206-4

b, Gọi d là ƯCLN\((n,n+1)\) \((d\inℕ^∗)\)

Ta có : \(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)

\(\Rightarrow(n+1)-n⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy : .....

Điều kiện của n để A là phân số là n khác 1 và n thuộc z( mk ko chắc chắn lắm)

để A là số nguyên thì n-1 chia hết cho 5

suy ra n-1 thuộc ước của 5 ={ 1;-1;5;-5}

* Xét trường hợp:

TH1 n-1=1 suy ra n=2(TM)

TH2 n-1=-1 suy ra n=0 (TM)

TH3 n-1=5 suy ra n=6(TM)

TH4n-1=-5 suy ra n=-4(TM)                                  ( MK NGHĨ BN NÊN LẬP BẢNG VÀ DÙNG KÍ HIỆU NHÉ!)

vậy n thuộc { -4;0;2;6}

# HỌC TỐT #

5 tháng 4 2019

Để M nguyên thì 4n+9 chia hết cho 2n+3

<=> 2(2n+3) +3 chia hết cho 2n+3

=> 3 chia hết cho 2n+3

Vì n nguyên nên 2n+3 là ước của 3

Các ước của 3 là 3;1;-1;-3

Do đó,2n+3 thuộc {3;1;-1;-3}

=> n thuộc {0;-0,5;-2;-3}

Vì n nguyên nên n thuộc {0;-2;-3}

Vậy ...

b, chứng minh tương tự nhưng tử ko chia hết cho mẫu

5 tháng 4 2019

a) Để \(M=\frac{4n+9}{2n+3}\)\(\inℤ\)

\(\Rightarrow4n+9⋮2n+3\)

\(\Rightarrow\)\(2(2n+3)+3⋮2n+3\)

Mà 2(2n+3) chia hết cho 2n+3 

=> 2 chia hết cho 2n +3

=> 2n+3 \(\inƯ\left(3\right)\)

TA CÓ BẢNG SAU : ( Lập bảng nha )

phần b mik chưa nghĩ ra nha 

8 tháng 7 2019

Để \(\frac{n+9}{n-6}\inℕ\)

\(\Rightarrow n+9⋮n-6\)

\(\Rightarrow n-6+15⋮n-6\)

Ta có : Vì \(n-6⋮n-6\)

\(\Rightarrow15⋮n-6\)

\(\Rightarrow n-6\inƯ_{\left(15\right)}\)

\(\Rightarrow n-6\in\left\{1;3;5;15\right\}\)

Lập bảng xét các trường hợp : 

\(n-6\)\(1\)\(3\)\(5\)\(15\)
\(n\)\(7\)\(9\)\(11\)\(21\)

Vậy \(\frac{n+9}{n-6}\inℕ\Leftrightarrow n\in\left\{7;9;11;21\right\}\)

Để \(\frac{n+9}{n-6}\)là số nguyên 

\(\Rightarrow n+9⋮n-6\)

\(\Rightarrow n-6+15⋮n-6\)

Ta có :\(n-6⋮n-6\)

\(\Rightarrow15⋮n-6\)

\(\Rightarrow n-6\inƯ\left(15\right)=\left\{\mp1;\mp3;\mp5;\mp15\right\}\)

n-6-11-335-5-1515
n5739111-921
15 tháng 11 2023

Vũ™©®×÷|

20 tháng 12 2018

Đặt \(A=\frac{6n+99}{3n+4}=\frac{6n+8+91}{3n+4}=\frac{2\left(3n+4\right)91}{3n+4}+\frac{91}{3n+4}=2+\frac{91}{3n+4}\)

a) Để A là số tự nhiên thì \(91⋮3n+4⋮3n+4\)là ước của 91 hay 3n + 4 \(\in\left\{1;7;13;91\right\}\)

Ta có bảng :

3n + 4171391
n-11329
nhận xétloạithỏa mãnthỏa mãnthỏa mãn

Vậy ......

b) Để A là phân số tối giản thì \(91\text{không chia hết cho 3n + 4 hay 3n + 4 không là ước của 91}\)

=> 3n + 4 ko chia hết cho ước nguyên tố của 91

=> 3n + 4 ko chia hết cho 7 => \(n\ne7k+1\)

=> 3n + 4 ko chia hết cho 13 => \(n\ne13m+3\)