Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)
b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)
\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)
c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)
\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)
\(=\dfrac{3}{\sqrt{x}-2}\)
từ dòng cuối là sai rồi bạn à
Bạn bỏ dòng cuối đi còn lại đúng rồi
Ở tử đặt nhân tử chung căn x chung rồi lại đặt căn x +1 chung
Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra
rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)
Câu 4: a) ĐK: \(x^2\ge9\Leftrightarrow\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)
b) ĐK: \(x^2-3x+2\ge0\Leftrightarrow\left[{}\begin{matrix}x\le1\\x\ge2\end{matrix}\right.\)
c) Đk: \(-3\le x< 5\)
d) x + 3 và 5 - x đồng dấu. Xét hai trường hợp:
\(\left\{{}\begin{matrix}x+3\ge0\\5-x>0\left(\text{do mẫu phải khác 0}\right)\end{matrix}\right.\Leftrightarrow-3\le x< 5\)
\(\left\{{}\begin{matrix}x+3< 0\\5-x< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< -3\\x>5\end{matrix}\right.\) do x ko thể đồng thời thỏa mãn cả hai nên loại.
Câu 1:
a) Đặt \(A=x+\sqrt{\left(x+2\right)^2}\cdot\left(x-2\right)\)
\(A=x+\left|x+2\right|\cdot\left(x-2\right)\)
+) Với \(x\ge-2\):
\(A=x+\left(x+2\right)\left(x-2\right)=x+x^2-4\)
+) Với \(x< -2\):
\(A=x-\left(x+2\right)\left(x-2\right)=x-x^2+4\)
b) \(B=\sqrt{m^2-6m+9-2m}\)
\(B=\sqrt{m^2-8m+9}\)
Bạn xem lại đề nhé :)
c) \(C=1+\sqrt{\frac{\left(x-1\right)^2}{x-1}}\)
\(C=1+\sqrt{x-1}\)
d) \(D=\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\)
\(D=\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}\)
\(D=\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}\)
\(D=\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\)
+) Xét \(x\ge8\):
\(D=\sqrt{x-4}+2+\sqrt{x-4}-2=2\sqrt{x-4}\)
+) Xét \(4< x< 8\):
\(D=\sqrt{x-4}+2+2-\sqrt{x-4}=4\)
Vậy....
a) ĐKXĐ: \(x\ne9\)
\(P=\frac{x\sqrt{x}+5\sqrt{x}-12-2\left(\sqrt{x}-3\right)^2-\left(\sqrt{x}+3\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{x\sqrt{x}+5\sqrt{x}-12-2x+12\sqrt{x}-18-x-5\sqrt{x}-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{x\sqrt{x}-3x+12\sqrt{x}-36}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{\left(\sqrt{x}-3\right)\left(x+12\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{x+12}{\sqrt{x}+2}\)
b) Ta có: \(P=\frac{x+12}{\sqrt{x}+2}=\frac{x-4+16}{\sqrt{x}+2}=\sqrt{x}-2+\frac{16}{\sqrt{x}+2}\)
\(=\left(\sqrt{x}+2\right)+\frac{16}{\sqrt{x}+2}-4\)
\(\ge2\sqrt{\left(\sqrt{x}+2\right).\frac{16}{\sqrt{x}+2}}-4=4\)
P = 4 thì \(\left(\sqrt{x}+2\right)^2=16\Rightarrow\sqrt{x}=2\Rightarrow x=4\)
Vậy GTNN của P là 4 khi x = 4.
bạn rút gon chưa
chưa nha