\(\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{x}\)

a) Rút gọn P

b)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2019

\(đkxđ\Leftrightarrow x\ge4\)

\(P=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{\frac{16}{x^2}-\frac{8}{x}+1}}\)

\(=\frac{\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}}{\sqrt{\frac{4^2}{x^2}-2.\frac{4}{x}+1}}\)

\(=\frac{\sqrt{\left(x-4+2\right)^2}+\sqrt{\left(x-4-2\right)^2}}{\sqrt{\left(\frac{4}{x}-1\right)^2}}\)

\(=\frac{|x-2|+|x-6|}{|\frac{4}{x}-1|}=\frac{x-2+|x-6|}{|\frac{4}{x}-1|}\)

Dùng bảng xét dấu nha

9 tháng 7 2017

ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]

9 tháng 7 2017

A=\(\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}\)

 = \(\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}\) (dk x>=4)

=\(\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\)

th1 x\(\ge8\)   ta co\(\sqrt{x-4}+2+\sqrt{x-4}-2=2\sqrt{x-4}\)

th2 4<=x<8 ta co \(\sqrt{x-4}+2+2-\sqrt{x-4}=4\)

12 tháng 9 2018

\(B=\frac{2+\sqrt{x}}{x-4\sqrt{x}+4}:\left(\frac{\sqrt{x}+2}{\sqrt{x}}+\frac{1}{\sqrt{x}-2}+\frac{6-x}{x+2\sqrt{x}}\right)\)

\(B=\frac{2+\sqrt{x}}{\left(\sqrt{x}-2\right)^2}:\left(\frac{\sqrt{x}+2}{\sqrt{x}}+\frac{1}{\sqrt{x}-2}+\frac{6-x}{\sqrt{x}\left(\sqrt{x}+2\right)}\right)\)

\(B=\frac{2+\sqrt{x}}{\left(\sqrt{x}-2\right)^2}:\left(\frac{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)+\sqrt{x}\left(\sqrt{x}+2\right)+\left(6-x\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\)

\(B=\frac{2+\sqrt{x}}{\left(\sqrt{x}-2\right)^2}:\left(\frac{x\sqrt{x}-8+x+2\sqrt{x}+6\sqrt{x}-12-x\sqrt{x}+2x}{\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\)

\(B=\frac{2+\sqrt{x}}{\left(\sqrt{x}-2\right)^2}:\left(\frac{3x+8\sqrt{x}-20}{\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\)

\(B=\frac{\sqrt{x}\left(2+\sqrt{x}\right)^2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)^2\left(3x+8\sqrt{x}-20\right)}\)

\(B=\frac{\sqrt{x}\left(2+\sqrt{x}\right)^2}{\left(\sqrt{x}-2\right)\left(3x+8\sqrt{x}-20\right)}\)

tới đây mình bí rồi cậu làm giúp mình đi

mại dzo

30 tháng 8 2017

tính 2 cái sau trước là ra mẫu chung

17 tháng 5 2019

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

e hèm

vãi

17 tháng 7 2016

a) Điều kiện xác định : \(x\ge0;x\ne1\)

\(P=\frac{10\sqrt{x}}{x+3\sqrt{x}-4}-\frac{2\sqrt{x}-3}{\sqrt{x}+4}+\frac{\sqrt{x}+1}{1-\sqrt{x}}=\frac{10\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}-\frac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)

\(=\frac{10\sqrt{x}-\left(2x-5\sqrt{x}+3\right)-\left(x+5\sqrt{x}+4\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}=\frac{-3x+10\sqrt{x}-7}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}=\frac{\left(\sqrt{x}-1\right)\left(7-3\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}=\frac{7-3\sqrt{x}}{\sqrt{x}+4}\)

b) Ta có : \(P=\frac{7-3\sqrt{x}}{\sqrt{x}+4}=\frac{-3\left(\sqrt{x}+4\right)+19}{\sqrt{x}+4}=\frac{19}{\sqrt{x}+4}-3>-3\)

c) Theo b) :   \(P=\frac{19}{\sqrt{x}+4}-3\)

Ta có : \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+4\ge4\Leftrightarrow\frac{19}{\sqrt{x}+4}\le\frac{19}{4}\Leftrightarrow\frac{19}{\sqrt{x}+4}-3\le\frac{7}{4}\)

\(\Rightarrow P\le\frac{7}{4}\) . Dấu "=" xảy ra khi x = 0

Vậy P đạt giá trị lớn nhất bằng \(\frac{7}{4}\) , khi x = 0